Abstract

Gas turbines operate at extreme temperatures and pressures, constraining the use of both optical measurement techniques as well as probes. A strategy to overcome this challenge consists of instrumenting the external part of the engine, with sensors located in a gentler environment, and use numerical inverse methodologies to retrieve the relevant quantities in the flowpath. An inverse heat transfer approach is a procedure that is used to retrieve the temperature, pressure, or mass flow through the engine based on the external casing temperature data. This manuscript proposes an improved digital filter inverse heat transfer method, which consists of a linearization of the heat conduction equation using sensitivity coefficients. The sensitivity coefficient characterizes the change of temperature due to a change in the heat flux. The heat conduction equation contains a non-linearity due to the temperature-dependent thermal properties of the materials. In previous literature, this problem is solved via iterative procedures that however increase the computational effort. The novelty of the proposed strategy consists of the inclusion of a non-iterative procedure to solve the non-linearity features. This procedure consists of the computation of the sensitivity coefficients in the function of temperature, together with an interpolation where the measured temperature is used to retrieve the sensitivity coefficients in each timestep. These temperature-dependent sensitivity coefficients are then used to compute the heat flux by solving the linear system of equations of the digital filter method. This methodology was validated in the Purdue Experimental Turbine Aerothermal Laboratory (PETAL) annular wind tunnel, a two-minute transient experiment with flow temperatures up to 450 K. Infrared thermography is used to measure the temperature in the outer surface of the inlet casing of a high-pressure turbine. Surface thermocouples measure the endwall metal temperature. The metal temperature maps from the IR thermography were used to retrieve the heat flux with the inverse method. The inverse heat transfer method results were validated against a direct computation of the heat flux obtained from temperature readings of surface thermocouples. The experimental validation was complemented with an uncertainty analysis of the inverse methodology: the Karhunen–Loeve expansion. This technique allows the propagation of uncertainty through stochastic systems of differential equations. In this case, the uncertainty of the inner casing heat flux has been evaluated through the simulation of different samples of the uncertain temperature field of the outer casing.

References

References
1.
Bergman
,
T. L.
, and
Incropera
,
F. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
Jefferson City
.
2.
Stolz
,
G.
,
1960
, “
Numerical Solutions to an Inverse Problem of Heat Conduction for Simple Shapes
,”
ASME J. Heat Transfer
,
82
(
1
), pp.
20
25
. 10.1115/1.3679871
3.
Hansen
,
P. C.
,
2010
,
Discrete Inverse Problems: Insight and Algorithms
,
Society for Industrial and Applied Mathematics
,
Philadelphia
.
4.
Fletcher
,
R.
,
1968
, “
Generalized Inverse Methods for the Best Least Squares Solution of Systems of non-Linear Equations
,”
Comput. J.
,
10
(
4
), pp.
392
399
. 10.1093/comjnl/10.4.392
5.
Woodbury
,
K. A.
,
2003
,
Inverse Engineering Handbook
,
CRC Press
,
Boca Raton
.
6.
De Vito
,
L.
,
Van den Braembussche
,
R. A.
, and
Deconinck
,
H.
,
2003
, “
A Novel Two-Dimensional Viscous Inverse Design Method for Turbomachinery Blading
,”
ASME J. Turbomach.
,
125
(
2
), pp.
310
316
. 10.1115/1.1545765
7.
Demeulenaere
,
A.
, and
Van den Braembussche
,
R.
,
1998
, “
Three-Dimensional Inverse Method for Turbomachinery Blading Design
,”
ASME J. Turbomach.
,
120
(
2
), pp.
247
255
. 10.1115/1.2841399
8.
Daneshkhah
,
K.
, and
Ghaly
,
W.
,
2007
, “
Aerodynamic Inverse Design for Viscous Flow in Turbomachinery Blading
,”
J. Propul. Power
,
23
(
4
), pp.
814
820
. 10.2514/1.27740
9.
Sousa
,
J. F. L.
,
Lavagnoli
,
S.
,
Paniagua
,
G.
, and
Villafañe
,
L.
,
2012
, “
Three-Dimensional (3D) Inverse Heat Flux Evaluation Based on Infrared Thermography
,”
Quant. Infrared Thermogr. J.
,
9
(
2
), pp.
177
191
. 10.1080/17686733.2012.743697
10.
Sousa
,
J.
,
Villafane
,
L.
,
Lavagnoli
,
S.
, and
Paniagua
,
G.
,
2012
, “
Inverse Heat Flux Evaluation Using Conjugate Gradient Methods From Infrared Imaging
,”
11th International Conference on Quantitative Infrared Thermography
,
Naples, Italy
,
11–14 June
.
11.
Najafi
,
H.
,
Woodbury
,
K. A.
, and
Beck
,
J. V.
,
2015
, “
A Filter Based Solution for Inverse Heat Conduction Problems in Multi-Layer Mediums
,”
Int. J. Heat Mass Transfer
,
83
(
1
), pp.
710
720
. 10.1016/j.ijheatmasstransfer.2014.12.055
12.
Najafi
,
H.
,
Woodbury
,
K. A.
, and
Beck
,
J. V.
,
2015
, “
Real Time Solution for Inverse Heat Conduction Problems in a Two-Dimensional Plate With Multiple Heat Fluxes at the Surface
,”
Int. J. Heat Mass Transfer
,
91
(
1
), pp.
1148
1156
. 10.1016/j.ijheatmasstransfer.2015.08.020
13.
Beck
,
J. V.
,
Blackwell
,
B.
, and
St. Clair
,
C. R.
, Jr.
,
1985
,
Inverse Heat Conduction: Ill-Posed Problems
,
John Wiley & Sons, Inc
,
New York
.
14.
Hahn
,
D. W.
, and
Necati Özişik
,
M.
,
2012
,
Heat Conduction
,
John Wiley & Sons, Inc.
,
Indianapolis
, pp.
273
299
.
15.
Anderson
,
A. M.
, and
Moffat
,
R. J.
,
1992
, “
The Adiabatic Heat Transfer Coefficient and the Superposition Kernel Function: Part 1—Data for Arrays of Flatpacks for Different Flow Conditions
,”
ASME J. Electron. Packag.
,
114
(
1
), pp.
14
21
. 10.1115/1.2905435
16.
Vick
,
B.
,
Beale
,
J. H.
, and
Frankel
,
J. I.
,
1987
, “
Integral Equation Solution for Internal Flow Subjected to a Variable Heat Transfer Coefficient
,”
ASME J. Heat Transfer
,
109
(
4
), pp.
856
860
. 10.1115/1.3248194
17.
Moffat
,
R. J.
,
1997
, “
What’s New in Convective Heat Transfer?
,”
Int. J. Heat Fluid Flow
,
19
(
2
), pp.
90
101
. 10.1016/S0142-727X(97)10014-5
18.
Booten
,
C.
, and
Eaton
,
J. K.
,
2005
, “
Discrete Green’s Function Measurements in Internal Flows
,”
ASME J. Heat Transfer
,
127
(
7
), pp.
692
698
. 10.1115/1.1924567
19.
Booten
,
C. W.
, and
Eaton
,
J. K.
,
2007
, “
Discrete Green’s Function Measurements in a Serpentine Cooling Passage
,”
ASME J. Heat Transfer
,
129
(
12
), pp.
1686
1696
. 10.1115/1.2767749
20.
Mukerji
,
D.
, and
Eaton
,
J. K.
,
2005
, “
Discrete Green’s Function Measurements in a Single Passage Turbine Model
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
366
377
. 10.1115/1.1844537
21.
Le Maitre
,
O. P.
, and
Knio
,
O. M.
,
2010
,
Spectral Methods for Uncertainty Quantification With Applications to Computational Fluid Dynamics
,
Scientific Computation
,
Springer
,
New York
.
22.
Ossiander
,
M. E.
,
Peszynska
,
M.
, and
Vasylkivska
,
V. S.
,
2014
, “
Conditional Stochastic Simulations of Flow and Transport with Karhunen-Loeve Expansions, Stochastic Collocation, and Sequential Gaussian Simulation
,”
J. Appl. Math.
,
2014
(
1
),
Article ID 652594
. 10.1155/2014/652594
23.
Colaço
,
M. J.
,
Orlande
,
H. R. B.
, and
Dulikravich
,
G. S.
,
2006
, “
Inverse and Optimization Problems in Heat Transfer
,”
J. Braz. Soc. Mech. Sci. Eng.
,
28
(
1
), pp.
1
24
. 10.1590/S1678-58782006000100001
24.
Ozisik
,
M. N.
, and
Orlande
,
H. R. B.
,
2000
,
Inverse Heat Transfer: Fundamentals and Applications
,
Taylor and Francis
,
New York
.
25.
Cuadrado
,
D. G.
,
Lozano
,
F.
,
Andreoli
,
V.
, and
Paniagua
,
G.
,
2018
, “
Engine-Scalable Rotor Casing Convective Heat Flux Evaluation Using Inverse Heat Transfer Methods
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011012
. 10.1115/1.4040713
26.
Cuadrado
,
D. G.
,
Marconnet
,
A.
, and
Paniagua
,
G.
,
2018
, “
Inverse Conduction Heat Transfer and Kriging Interpolation Applied to Temperature Sensor Location in Microchips
,”
ASME J. Electron. Packag.
,
140
(
1
), p.
010905
. 10.1115/1.4039026
27.
Hadamard
,
J.
,
1902
,
Sur les Problèmes aux Dérivées Partielles et Leur Signification Physique
,
Princeton University, Bulletin
,
Princeton
, pp.
49
52
.
28.
Tikhonov
,
A. N.
,
1975
, “
Inverse Problems in Heat Conduction
,”
J. Eng. Phys.
,
29
(
1
), pp.
816
820
. 10.1007/BF00860616
29.
Paniagua
,
G.
,
Cuadrado
,
D.
,
Saavedra
,
J.
,
Andreoli
,
V.
,
Meyer
,
T.
,
Solano
,
J. P.
,
Herrero
,
R.
,
Meyer
,
S.
, and
Lawrence
,
D.
,
2019
, “
Design of the Purdue Experimental Turbine Aerothermal Laboratory for Optical and Surface Aerothermal Measurements
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
012601
. 10.1115/1.4040683
30.
Saavedra
,
J.
,
Paniagua
,
G.
, and
Saracoglu
,
B. H.
,
2017
, “
Experimental Characterization of the Vane Heat Flux Under Pulsating Trailing-Edge Blowing
,”
ASME J. Turbomach.
,
139
(
6
), p.
061004
. 10.1115/1.4035211
31.
Loeve
,
M.
,
1978
,
Probability Theory
, 4th ed.,
Springer-Verlang
,
New York
.
32.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2011
,
Theory and Design for Mechanical Measurements
, 5th ed.,
John Wiley & Sons, Inc.
,
New York
.
You do not currently have access to this content.