Abstract

High Reynolds flow over a nozzle guide-vane with elevated inflow turbulence was simulated using wall-resolved large eddy simulation (LES). The simulations were undertaken at an exit Reynolds number of 0.5 × 106 and inflow turbulence levels of 0.7% and 7.9% and for uniform heat-flux boundary conditions corresponding to the measurements of Varty and Ames (2016, “Experimental Heat Transfer Distributions Over an Aft Loaded Vane With a Large Leading Edge at Very High Turbulence Levels,” ASME Paper No. IMECE2016-67029). The predicted heat transfer distribution over the vane is in excellent agreement with measurements. At higher freestream turbulence, the simulations accurately capture the laminar heat transfer augmentation on the pressure surface and the transition to turbulence on the suction surface. The bypass transition on the suction surface is preceded by boundary layer streaks formed under the external forcing of freestream disturbances which breakdown to turbulence through inner-mode secondary instabilities. Underneath the locally formed turbulent spot, heat transfer coefficient spikes and generally follows the same pattern as the turbulent spot. The details of the flow and temperature fields on the suction side are characterized, and first- and second-order statistics are documented. The turbulent Prandtl number in the boundary layer is generally in the range of 0.7–1, but decays rapidly near the wall.

References

References
1.
Acharya
,
S.
, and
Kanani
,
Y.
,
2017
,
Advances in Heat Transfer
, Vol.
49
,
E. M.
Sparrow
,
J. P.
Abraham
, and
J. M.
Gorman
, eds.,
Academic Press
,
Cambridge, MA
, pp.
91
156
.
2.
Kanani
,
Y.
,
Acharya
,
S.
, and
Ames
,
F.
,
2018
, “
Simulations of Slot Film-Cooling With Freestream Acceleration and Turbulence
,”
ASME J. Turbomach.
,
140
(
4
), p.
041005
. 10.1115/1.4038877
3.
Varty
,
J. E.
,
Soma
,
L. W.
,
Ames
,
F. E.
, and
Acharya
,
S.
,
2017
, “
Vane Suction Surface Heat Transfer in Regions of Secondary Flows: The Influence of Turbulence Level, Reynolds Number, and the Endwall Boundary Condition
,”
ASME J. Turbomach.
,
140
(
2
), p.
021010
. 10.1115/1.4038281
4.
Kingery
,
J. E.
, and
Ames
,
F. E.
,
2016
, “
Full Coverage Shaped Hole Film Cooling in an Accelerating Boundary Layer With High Free-Stream Turbulence
,”
ASME J. Turbomach.
,
138
(
7
), p.
07100
. 10.1115/1.4031867
5.
Mayle
,
R. E.
,
1991
, “
The 1991 IGTI Scholar Lecture: The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(
4
), pp.
509
536
. 10.1115/1.2929110
6.
Bario
,
F.
, and
Beral
,
C.
,
1998
, “
Boundary Layer Measurements on the Pressure and Suction Sides of a Turbine Inlet Guide Vane
,”
Exp. Therm. Fluid Sci.
,
17
(
1–2
), pp.
1
9
. 10.1016/S0894-1777(97)10043-7
7.
Radomsky
,
R. W.
, and
Thole
,
K. A.
,
2002
, “
Detailed Boundary Layer Measurements on a Turbine Stator Vane at Elevated Freestream Turbulence Levels
,”
ASME J. Turbomach.
,
124
(
1
), pp.
107
118
. 10.1115/1.1424891
8.
Thole
,
K. A.
,
Radomsky
,
R. W.
,
Kang
,
M. B.
, and
Kohli
,
A.
,
2002
, “
Elevated Freestream Turbulence Effects on Heat Transfer for a Gas Turbine Vane
,”
Int. J. Heat Fluid Flow
,
23
(
2
), pp.
137
147
. 10.1016/S0142-727X(01)00145-X
9.
Dees
,
J. E.
,
Bogard
,
D. G.
,
Ledezma
,
G. A.
,
Laskowski
,
G. M.
, and
Tolpadi
,
A. K.
,
2012
, “
Momentum and Thermal Boundary Layer Development on an Internally Cooled Turbine Vane
,”
ASME J. Turbomach.
,
134
(
6
), p.
061004
. 10.1115/1.4006281
10.
Schobeiri
,
M. T.
, and
Nikparto
,
A.
,
2014
, “
A Comparative Numerical Study of Aerodynamics and Heat Transfer on Transitional Flow Around a Highly Loaded Turbine Blade With Flow Separation Using RANS, URANS and LES
,”
ASME
Paper No. GT2014-25828
. 10.1115/gt2014-25828
11.
Varty
,
J. W.
, and
Ames
,
F. E.
,
2016
, “
Experimental Heat Transfer Distributions Over an Aft Loaded Vane With a Large Leading Edge at Very High Turbulence Levels
,”
ASME
Paper No. IMECE2016-67029
. 10.1115/imece2016-67029
12.
Nasir
,
S.
,
Carullo
,
J. S.
,
Ng
,
W.-F.
,
Thole
,
K. A.
,
Wu
,
H.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2009
, “
Effects of Large Scale High Freestream Turbulence and Exit Reynolds Number on Turbine Vane Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
,
131
(
2
), p.
021021
. 10.1115/1.2952381
13.
Nix
,
A. C.
,
Diller
,
T. E.
, and
Ng
,
W. F.
,
2007
, “
Experimental Measurements and Modeling of the Effects of Large-Scale Freestream Turbulence on Heat Transfer
,”
ASME J. Turbomach.
,
129
(
3
), pp.
542
550
. 10.1115/1.2515555
14.
Papa
,
F.
,
Madanan
,
U.
, and
Goldstein
,
R. J.
,
2017
, “
Modeling and Measurements of Heat/Mass Transfer in a Linear Turbine Cascade
,”
ASME J. Turbomach.
,
139
(
9
), p.
091002
. 10.1115/1.4036106
15.
Sveningsson
,
A.
, and
Davidson
,
L.
,
2005
, “
Computations of Flow Field and Heat Transfer in a Stator Vane Passage Using the v2-f Turbulence Model
,”
ASME J. Turbomach.
,
127
(
3
), pp.
627
634
. 10.1115/1.1929820
16.
Papa
,
M.
,
Goldstein
,
R. J.
, and
Gori
,
F.
,
2007
, “
Numerical Heat Transfer Predictions and Mass/Heat Transfer Measurements in a Linear Turbine Cascade
,”
Appl. Therm. Eng.
,
27
(
4
), pp.
771
778
. 10.1016/j.applthermaleng.2006.10.017
17.
Gourdain
,
N.
,
Gicquel
,
L. Y. M.
, and
Collado
,
E.
,
2012
, “
RANS and LES for the Heat Transfer Prediction in Turbine Guide Vane
,”
J. Propul. Power
,
28
(
2
), pp.
423
433
. 10.2514/1.B34314
18.
Tucker
,
P. G.
,
2013
, “
Trends in Turbomachinery Turbulence Treatments
,”
Prog. Aerosp. Sci.
,
63
, pp.
1
32
. 10.1016/j.paerosci.2013.06.001
19.
Hermanson
,
K.
,
Kern
,
S.
,
Picker
,
G.
, and
Parneix
,
S.
,
2003
, “
Predictions of External Heat Transfer for Turbine Vanes and Blades With Secondary Flowfields
,”
ASME J. Turbomach.
,
125
(
1
), pp.
107
113
. 10.1115/1.1529201
20.
Luo
,
J.
,
Razinsky
,
E. H.
, and
Moon
,
H.-K.
,
2013
, “
Three-Dimensional RANS Prediction of Gas-Side Heat Transfer Coefficients on Turbine Blade and Endwall
,”
ASME J. Turbomach.
,
135
(
2
), p.
021005
. 10.1115/1.4006642
21.
Bhaskaran
,
R.
, and
Lele
,
S.
,
2011
, “
Heat Transfer Prediction in High Pressure Turbine Cascade with Free-Stream Turbulence Using LES
,”
41st AIAA Fluid Dynamics Conference and Exhibit
,
Reston, VA
,
June 27–30
.
22.
Bhaskaran
,
R.
, and
Lele
,
S. K.
,
2010
, “
Large Eddy Simulation of Free-Stream Turbulence Effects on Heat Transfer to a High-Pressure Turbine Cascade
,”
J. Turbul.
,
11
(
6
), pp.
1
15
. 10.1080/14685241003705756
23.
Collado Morata
,
E.
,
Gourdain
,
N.
,
Duchaine
,
F.
, and
Gicquel
,
L. Y. M.
,
2012
, “
Effects of Free-Stream Turbulence on High Pressure Turbine Blade Heat Transfer Predicted by Structured and Unstructured LES
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5754
5768
. 10.1016/j.ijheatmasstransfer.2012.05.072
24.
Garai
,
A.
,
Diosady
,
L. T.
,
Murman
,
S. M.
, and
Madavan
,
N. K.
,
2018
, “
Scale-Resolving Simulations of Bypass Transition in a High-Pressure Turbine Cascade Using a Spectral Element Discontinuous Galerkin Method
,”
ASME J. Turbomach.
,
140
(
3
), p.
031004
. 10.1115/1.4038403
25.
Medic
,
G.
,
Joo
,
J.
,
Lele
,
S. K.
, and
Sharma
,
O. P.
,
2012
, “
Prediction of Heat Transfer in a Turbine Cascade With High Levels of Free-Stream Turbulence
,”
Proceedings of the Summer Program
,
Center for Turbulence Research
, pp.
147
155
.
26.
Wheeler
,
A. P. S.
,
Sandberg
,
R. D.
,
Sandham
,
N. D.
,
Pichler
,
R.
,
Michelassi
,
V.
, and
Laskowski
,
G.
,
2016
, “
Direct Numerical Simulations of a High-Pressure Turbine Vane
,”
ASME J. Turbomach.
,
138
(
7
), p.
071003
. 10.1115/1.4032435
27.
Jee
,
S.
,
Joo
,
J.
, and
Medic
,
G.
,
2016
, “
Large-Eddy Simulation of a High-Pressure Turbine Vane With Inlet Turbulence
,”
ASME
Paper No. GT2016-56980
. 10.1115/gt2016-56980
28.
Arts
,
T.
,
Lambert de Rouvroit
,
M.
, and
Rutherford
,
A. W.
,
1990
, “
Aero-Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade
,”
Technical Note No. 174
,
von Karman Institute for Fluid Dynamics
,
Genese, Belgium
.
29.
Kanani
,
Y.
,
Acharya
,
S.
, and
Ames
,
F.
,
2019
, “
Large Eddy Simulation of the Laminar Heat Transfer Augmentation on the Pressure Side of a Turbine Vane Under Freestream Turbulence
,”
ASME J. Turbomach.
,
141
(
4
), pp.
041004
. 10.1115/1.4041599
30.
Zaki
,
T. A.
,
2013
, “
From Streaks to Spots and on to Turbulence: Exploring the Dynamics of Boundary Layer Transition
,”
Flow, Turbul. Combust.
,
91
(
3
), pp.
451
473
. 10.1007/s10494-013-9502-8
31.
Durbin
,
P. A.
,
2017
, “
Perspectives on the Phenomenology and Modeling of Boundary Layer Transition
,”
Flow, Turbul. Combust.
,
99
(
1
), pp.
1
23
. 10.1007/s10494-017-9819-9
32.
Nagarajan
,
S.
,
Lele
,
S. K.
, and
Ferziger
,
J. H.
,
2007
, “
Leading-Edge Effects in Bypass Transition
,”
J. Fluid Mech.
,
572
, pp.
471
504
. 10.1017/S0022112006001893
33.
Jarrin
,
N.
,
Benhamadouche
,
S.
,
Laurence
,
D.
, and
Prosser
,
R.
,
2006
, “
A Synthetic-Eddy-Method for Generating Inflow Conditions for Large-Eddy Simulations
,”
Int. J. Heat Fluid Flow
,
27
(
4
), pp.
585
593
. 10.1016/j.ijheatfluidflow.2006.02.006
34.
Jarrin
,
N.
,
2008
, “
Synthetic Inflow Boundary Conditions for the Numerical Simulation of Turbulence
,” Ph.D. thesis,
The University of Manchester
,
Manchester, UK
.
35.
Chowdhury
,
N.
, and
Ames
,
F. E.
,
2013
, “
The Response of High Intensity Turbulence in the Presence of Large Stagnation Regions
,”
ASME
Paper No. GT2013-95055
. 10.1115/gt2013-95055
36.
Issa
,
R. I.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
. 10.1016/0021-9991(86)90099-9
37.
Ducros
,
F.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
1998
, “Wall-Adapting Local Eddy-Viscosity Models for Simulations in Complex Geometries,”
Numerical Methods for Fluid Dynamics VI
,
M. J.
Baines
, ed.,
Oxford University Computing Laboratory
,
Oxford
, pp.
293
299
.
38.
Choi
,
H.
, and
Moin
,
P.
,
2012
, “
Grid-Point Requirements for Large Eddy Simulation: Chapman’s Estimates Revisited
,”
Phys. Fluids
,
24
(
1
), p.
011702
. 10.1063/1.3676783
39.
Chapman
,
D. R.
,
1979
, “
Computatisnal Aerodynamics Development and Outlook
,”
AIAA J.
,
17
(
12
), pp.
1293
1313
. 10.2514/3.61311
40.
Kravchenko
,
A. G. A.
,
Moin
,
P.
, and
Moser
,
R.
,
1996
, “
Zonal Embedded Grids for Numerical Simulations of Wall-Bounded Turbulent Flows
,”
J. Comput. Phys.
,
423
(
2
), pp.
412
423
. 10.1006/jcph.1996.0184
41.
Schlatter
,
P.
,
Örlü
,
R.
,
Li
,
Q.
,
Brethouwer
,
G.
,
Fransson
,
J. H. M.
,
Johansson
,
A. V.
,
Alfredsson
,
P. H.
, and
Henningson
,
D. S.
,
2009
, “
Turbulent Boundary Layers up to Reθ = 2500 Studied Through Simulation and Experiment
,”
Phys. Fluids
,
21
(
5
), p.
051702
. 10.1063/1.3139294
42.
Bhaskaran
,
R.
,
2010
, “
Large Eddy Simulation of High Pressure Turbine Cascade
,”
Ph.D. thesis
,
Stanford University
,
Stanford, CA
.
43.
Ames
,
F. E.
,
1997
, “
The Influence of Large-Scale High-Intensity Turbulence on Vane Heat Transfer
,”
ASME J. Turbomach.
,
119
(
1
), pp.
23
30
. 10.1115/1.2841007
44.
Nikparto
,
A.
, and
Schobeiri
,
M. T.
,
2018
, “
Combined Numerical and Experimental Investigations of Heat Transfer of a Highly Loaded Low-Pressure Turbine Blade Under Periodic Inlet Flow Condition
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
232
(
7
), pp.
769
784
. 10.1177/0957650918758158
45.
Hack
,
M. J. P.
, and
Zaki
,
T. A.
,
2014
, “
Streak Instabilities in Boundary Layers Beneath Free-Stream Turbulence
,”
J. Fluid Mech.
,
741
, pp.
280
315
. 10.1017/jfm.2013.677
46.
Durbin
,
P.
, and
Wu
,
X.
,
2007
, “
Transition Beneath Vortical Disturbances
,”
Annu. Rev. Fluid Mech.
,
39
(
1
), pp.
107
128
. 10.1146/annurev.fluid.39.050905.110135
47.
Zaki
,
T. A.
, and
Durbin
,
P. A.
,
2006
, “
Continuous Mode Transition and the Effects of Pressure Gradient
,”
J. Fluid Mech.
,
563
, pp.
357
388
. 10.1017/S0022112006001340
48.
Hedley
,
T. B.
, and
Keffer
,
J. F.
,
1974
, “
Turbulent/Non-Turbulent Decisions in an Intermittent Flow
,”
J. Fluid Mech.
,
64
(
04
), pp.
625
644
. 10.1017/S0022112074001832
49.
Nolan
,
K. P.
, and
Zaki
,
T. A.
,
2013
, “
Conditional Sampling of Transitional Boundary Layers in Pressure Gradients
,”
J. Fluid Mech.
,
728
, pp.
306
339
. 10.1017/jfm.2013.287
50.
Jacobs
,
R. G.
, and
Durbin
,
P. A.
,
2001
, “
Simulations of Bypass Transition
,”
J. Fluid Mech.
,
428
, pp.
185
212
. 10.1017/S0022112000002469
51.
Schlatter
,
P.
,
Brandt
,
L.
,
de Lange
,
H. C.
, and
Henningson
,
D. S.
,
2008
, “
On Streak Breakdown in Bypass Transition
,”
Phys. Fluids
,
20
(
10
), pp.
1
15
. 10.1063/1.3005836
52.
Vaughan
,
N. J.
, and
Zaki
,
T. A.
,
2011
, “
Stability of Zero-Pressure-Gradient Boundary Layer Distorted by Unsteady Klebanoff Streaks
,”
J. Fluid Mech.
,
681
, pp.
116
153
. 10.1017/jfm.2011.177
53.
Madavan
,
N.
, and
Rai
,
M.
,
1995
, “
Direct Numerical Simulation of Boundary Layer Transition on a Heated Flat Plate with Elevated Freestream Turbulence
,”
33rd Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
AIAA
.
54.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables—Part I: Model Formulation
,”
ASME J. Turbomach.
,
128
(
3
), pp.
413
422
. 10.1115/1.2184352
55.
Wu
,
X.
, and
Moin
,
P.
,
2009
, “
Direct Numerical Simulation of Turbulence in a Nominally Zero-Pressure-Gradient Flat-Plate Boundary Layer
,”
J. Fluid Mech.
,
630
, pp.
5
41
. 10.1017/S0022112009006624
56.
Bradshaw
,
P.
, and
Huang
,
G. P.
,
1995
, “
The Law of the Wall in Turbulent Flow
,”
Proc. R. Soc. A
,
451
(
1941
), pp.
165
188
.
57.
Wang
,
T.
,
Keller
,
F. J.
, and
Zhou
,
D.
,
1996
, “
Flow and Thermal Structures in a Transitional Boundary Layer
,”
Exp. Therm. Fluid Sci.
,
12
(
3
), pp.
352
363
. 10.1016/0894-1777(95)00126-3
58.
Kim
,
J.
,
Simon
,
T. W.
, and
Kestoras
,
M.
,
1994
, “
Fluid Mechanics and Heat Transfer Measurements in Transitional Boundary Layers Conditionally Sampled on Intermittency
,”
ASME J. Turbomach.
,
116
(
3
), pp.
405
416
. 10.1115/1.2929427
59.
Ovchinnikov
,
V.
,
Choudhari
,
M. M.
, and
Piomelli
,
U.
,
2008
, “
Numerical Simulations of Boundary-Layer Bypass Transition Due to High-Amplitude Free-Stream Turbulence
,”
J. Fluid Mech.
,
613
, pp.
135
169
. 10.1017/S0022112008003017
60.
Brandt
,
L.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
,
2004
, “
Transition in Boundary Layers Subject to Free-Stream Turbulence
,”
J. Fluid Mech.
,
517
, pp.
167
198
. 10.1017/S0022112004000941
61.
Wang
,
T.
, and
Simon
,
T. W.
,
1987
, “
Heat Transfer and Fluid Mechanics Measurements in Transitional Boundary Layers on Convex-Curved Surfaces
,”
ASME J. Turbomach.
,
109
(
3
), pp.
443
452
. 10.1115/1.3262125
62.
Fransson
,
J. H. M.
,
Matsubara
,
M.
, and
Alfredsson
,
P. H.
,
2005
, “
Transition Induced by Free-Stream Turbulence
,”
J. Fluid Mech.
,
527
, pp.
1
25
. 10.1017/S0022112004002770
63.
Zhou
,
D.
, and
Wang
,
T.
,
1995
, “
Effects of Elevated Free-Stream Turbulence on Flow and Thermal Structures in Transitional Boundary Layers
,”
ASME J. Turbomach.
,
117
(
3
), pp.
407
417
. 10.1115/1.2835676
64.
Sohn
,
K. H.
, and
Reshotko
,
E.
,
1991
, “Experimental Study of Boundary Layer Transition with Elevated Freestream Turbulence on a Heated Flat Plate,”
NASA
,
Technical Memorandum 103779
,
Lewis Research Center
,
Cleveland, OH
.
65.
Sohn
,
K. H.
, and
Zaman
,
K. B. M. Q.
,
1992
, “
Turbulent Heat Flux Measurements in a Transitional Boundary Layer
,”
NASA
,
Technical Memorandum 105623
.
66.
Kasagi
,
N.
,
Kuroda
,
A.
, and
Hirata
,
M.
,
1989
, “
Numerical Investigation of Near-Wall Turbulent Heat Transfer Taking Into Account the Unsteady Heat Conduction in the Solid Wall
,”
ASME J. Heat Transfer
,
111
(
2
), pp.
385
392
. 10.1115/1.3250689
67.
Hattori
,
H.
,
Houra
,
T.
, and
Nagano
,
Y.
,
2007
, “
Direct Numerical Simulation of Stable and Unstable Turbulent Thermal Boundary Layers
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1262
1271
. 10.1016/j.ijheatfluidflow.2007.04.012
68.
Kays
,
W. M.
,
1994
, “
Turbulent Prandtl Number—Where Are We?
ASME J. Heat Transfer
,
116
(
2
), pp.
284
295
. 10.1115/1.2911398
69.
Wu
,
X.
, and
Moin
,
P.
,
2010
, “
Transitional and Turbulent Boundary Layer with Heat Transfer
,”
Phys. Fluids
,
22
(
8
), p.
085105
. 10.1063/1.3475816
70.
Li
,
Q.
,
Schlatter
,
P.
,
Brandt
,
L.
, and
Henningson
,
D. S.
,
2009
, “
DNS of a Spatially Developing Turbulent Boundary Layer with Passive Scalar Transport
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
916
929
. 10.1016/j.ijheatfluidflow.2009.06.007
71.
Li
,
D.
,
Luo
,
K.
, and
Fan
,
J.
,
2016
, “
Direct Numerical Simulation of Heat Transfer in a Spatially Developing Turbulent Boundary Layer
,”
Phys. Fluids
,
28
(
10
), p.
105104
. 10.1063/1.4964686
72.
Wu
,
X.
, and
Durbin
,
P. A.
,
2000
, “
Numerical Simulation of Heat Transfer in a Transitional Boundary Layer With Passing Wakes
,”
ASME J. Heat Transfer
,
122
(
2
), pp.
248
257
. 10.1115/1.521485
73.
Zhou
,
D.
, and
Wang
,
T.
,
1996
, “
Combined Effects of Elevated Free-Stream Turbulence and Streamwise Acceleration on Flow and Thermal Structures in Transitional Boundary Layers
,”
Exp. Therm. Fluid Sci.
,
12
(
3
), pp.
338
351
. 10.1016/0894-1777(95)00125-5
74.
Volino
,
R. J.
, and
Simon
,
T. W.
,
1997
, “
Boundary Layer Transition Under High Free-Stream Turbulence and Strong Acceleration Conditions: Part 2—Turbulent Transport Results
,”
ASME J. Heat Transfer
,
119
(
3
), pp.
427
432
. 10.1115/1.2824115
You do not currently have access to this content.