Abstract

The cooling ratio on a dynamically forced 7 × 7 impingement jet array is studied experimentally. The current study is focused on determining the influence of a phase shift between every row of nozzles as well as the impact of a duty cycle variation on the cooling ratio. Both parameters are studied in dependency of the impingement distance (H/D = 2, 3, 5), the (nozzle-) Reynolds-number (ReD = 3200, 5200, 7200), and the excitation frequency (f = 0 Hz − 1000 Hz). For every set of parameters, the phase shift between every row of nozzles is varied between Φ=0% and 90%, while the variation of the duty cycle is performed between duty cycle (DC) = 35% and 65%. During all investigations, the dimensionless distance between adjacent nozzles is fixed at Sx/D = Sy/D = 5, and liquid crystal thermography is used to acquire the wall temperatures, which are further processed to calculate the local Nusselt numbers. Generally, the implementation of an excitation frequency allows a case-depending increase in the cooling ratio of up to 52%. Further implementation of a phase shift yields an additional frequency-depending improvement of the cooling ratio. In case of duty cycle variation, the best case revealed an additional 19% improvement in the cooling ratio.

References

References
1.
Bräunling
,
W. J. G.
,
2009
,
Flugzeugtriebwerke
, 3rd ed.,
Springer
,
New York
.
2.
Florschuetz
,
L. W.
,
Metzger
,
D. E.
,
Takeuchi
,
D.
, and
Berry
,
R.
,
1980
, “
Multiple Jet Impingement Heat Transfer Characteristic—Experimental Investigation of In-Line and Staggered Arrays With Crossflow
,”
Department of Mechanical Engineering, Arizona State University
,
Tempe
,
NASA-CR-3217
.
3.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
337
342
. 10.1115/1.3244463
4.
Weigand
,
B.
, and
Spring
,
S.
,
2010
, “
Multiple Jet Impingement—A Review
,”
Heat Transfer Res.
,
42
(
2
), pp.
101
142
. 10.1615/HeatTransRes.v42.i2.30
5.
Xing
,
Y.
,
Spring
,
S.
, and
Weigand
,
B.
,
2010
, “
Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets
,”
ASME J. Heat. Transfer
,
132
(
9
), p.
092201
. 10.1115/1.4001633
6.
Liu
,
T.
, and
Sullivan
,
J. P.
,
1996
, “
Heat Transfer and Flow Structures in an Excited Circular Impingement Jet
,”
Int. J. Heat Mass Transfer
,
39
(
17
), pp.
3695
3706
. 10.1016/0017-9310(96)00027-0
7.
Vejrazka
,
J.
,
Tihon
,
J.
,
Marty
,
P.
, and
Sobolik
,
V.
,
2005
, “
Effect of an External Excitation on the Flow Structure in a Circular Impinging Jet
,”
Phys. Fluids.
,
17
(
10
), p.
105102
. 10.1063/1.2084207
8.
Hofmann
,
H. M.
,
Movileanu
,
D. L.
,
Kind
,
M.
, and
Martin
,
H.
,
2007
, “
Influence of a Pulsation on Heat Transfer and Flow Structure in Submerged Impinging Jets
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3638
3648
. 10.1016/j.ijheatmasstransfer.2007.02.001
9.
Gharib
,
M.
,
Rambod
,
E.
, and
Shariff
,
K.
,
1998
, “
A Universal Time Scale for Vortex Ring Formation
,”
J. Fluid. Mech.
,
360
, pp.
121
140
. 10.1017/S0022112097008410
10.
Janetzke
,
T.
,
Nitsche
,
W.
, and
Täge
,
J.
,
2008
, “
Experimental Investigations of Flow Field and Heat Transfer Characteristics Due to Periodically Pulsating Impinging Air Jets
,”
Heat Mass Transfer
,
45
(
2
), pp.
193
206
. 10.1007/s00231-008-0410-8
11.
Herwig
,
H.
, and
Middelberg
,
G.
,
2008
, “
The Physics of Unsteady Jet Impingement and Its Heat Transfer Performance
,”
Acta Mech.
,
201
(
1
), pp.
171
184
. 10.1007/s00707-008-0080-0
12.
Middelberg
,
G.
, and
Herwig
,
H.
,
2009
, “
Convective Heat Transfer Under Unsteady Impinging Jets: The Effect of the Shape of the Unsteadiness
,”
J. Heat Mass Transfer
,
45
(
12
), pp.
1519
1532
. 10.1007/s00231-009-0527-4
13.
Bons
,
J. P.
,
Sondergaard
,
R.
, and
Rivir
,
R. B.
,
2002
, “
The Fluid Dynamics of LPT Blade Separation Control Using Pulsed Jets
,”
ASME J. Turbomach.
,
124
(
1
), pp.
77
85
. 10.1115/1.1425392
14.
Scholz
,
P.
,
Ortmanns
,
J.
,
Kaehler
,
C.
, and
Radespiel
,
R.
,
2006
, “
Leading Edge Separation Control by Means of Pulsed Jet Actuators
,”
3rd AIAA Flow Control Conference, AIAA AVIATION Forum
,
San Francisco, CA
,
June 5–8
.
15.
Haucke
,
F.
,
2016
,
Aktive Stroemungskontrolle Zur Effizienzsteigerung Von Hochauftriebskonfigurationen
.
16.
Haucke
,
F.
,
Nitsche
,
W.
, and
Peitsch
,
D.
,
2016
, “
Enhanced Convective Heat Transfer Due to Dynamically Forced Impingement Jet Array
,”
Proceedings of ASME Turbo Expo 2016
,
Seoul, South Korea
,
June 13–17
,
Paper No. GT2016-57360
.
17.
Berthold
,
A.
, and
Haucke
,
F.
,
2017
, “
Experimental Investigation of Dynamically Forced Impingement Cooling
,”
Proceedings of ASME Turbo Expo 2017, Vol. 5A: Heat Transfer ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
.
18.
Berthold
,
A.
, and
Haucke
,
F.
,
2018
, “Experimental Study on the Alteration of Cooling Effectivity Through Excitation-Frequency Variation Within an Impingement Jet Array With Side-Wall Induced Crossflow,”
Acvtive Flow and Combustion Control 2018
,
King
,
R.
, ed.,
Springer Nature
,
Switzerland AG
, pp.
339
354
.
You do not currently have access to this content.