Abstract

In the present work, the turbulent flow fields in a static and rotating ribbed channel representative of an aeronautical gas turbine are investigated by the means of wall-resolved compressible large-Eddy simulation (LES). This approach has been previously validated in a squared ribbed channel based on an experimental database from the Von Karman Institute (Reynolds and rotation numbers of about 15,000 and ±0.38, respectively). LES results prove to reproduce differences induced by buoyancy in the near rib region and resulting from adiabatic or anisothermal flows under rotation. The model also manages to predict the turbulence increase (decrease) around the rib in destabilizing (stabilizing) rotation of the ribbed channels. On this basis, this paper investigates in more detail the spatial development of the flow along the channel and its potential impact on secondary flow structures. More specifically and for all simulations, results of the adiabatic static case exhibit two contra-rotating structures that are close to the lateral walls of the channel induced by transversal pressure difference created by the ribs. These structures are generated after the first ribs and appear behind all inter-rib sections, their relative position is partly affected by rotation. When considering the stabilizing rotating case, two additional contra-rotating structures also develop along the channel from the entrance close to the low-pressure wall (rib-mounted side). These vortices are due to the confinement of the configuration, inflow profile and are the result of Coriolis forces induced by rotation. Görtler vortices also appear on the pressure wall (opposite to the rib-mounted side). In the destabilizing rotating case, these two types of secondary structures are found to co-exist, and their migration in the channel is significantly different due to the presence of the ribs on the pressure side. Finally, it is shown that heat transfer affects only marginally the static and stabilized cases while it changes more significantly the flow organization in the destabilizing case mainly because of enhanced heat transfer and increased buoyancy force effects.

References

References
1.
Liu
,
Y.
,
Tucker
,
P. G.
, and
Lo Iacono
,
G.
,
2006
, “
Comparison of Zonal RANS and LES for a Non-Isothermal Ribbed Channel Flow
,”
Int. J. Heat Fluid Flow
,
27
(
3
), pp.
391
401
. 10.1016/j.ijheatfluidflow.2005.11.004
2.
Fransen
,
R.
,
Gourdain
,
N.
, and
Gicquel
,
L. Y. M.
,
2012
, “
Steady and Unsteady Modeling for Heat Transfer Predictions of High Pressure Turbine Blade Internal Cooling
,”
ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
,
Paper No. GT2012-69482
.
3.
Sewall
,
E. A.
, and
Tafti
,
D. K.
,
2004
, “
Large Eddy Simulation of the Developing Region of a Rotating Ribbed Internal Turbine Blade Cooling Channel
,”
ASME Turbo Expo
,
Vienna, Austria
,
June 14–17
.
4.
Fransen
,
R.
,
Vial
,
L.
, and
Gicquel
,
L. Y. M.
,
2013
, “
Large Eddy Simulation of Rotating Ribbed Channel
,”
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
,
Paper No. GT2013-95076
.
5.
Mayo
,
I.
,
2017
, “
Flow Field and Heat Transfer in a Rotating Rib-Roughened Cooling Passage
,”
Ph.D. thesis
,
Dynamique des fluides, Institut National Polytechnique de Toulouse
.
6.
Bradshaw
,
P.
,
1969
, “
The Analogy Between Streamline Curvature and Buoyancy in Turbulent Shear Flow
,”
J. Fluid Mech.
,
36
(
1
), p.
177
. 10.1017/S0022112069001583
7.
Johnston
,
J. P.
,
Halleen
,
R. M.
, and
Lezius
,
D. K.
,
1972
, “
Effects of Spanwise Rotation on the Structure of Two-Dimensional Fully Developed Turbulent Channel Flow
,”
J. Fluid Mech.
,
56
(
3
), pp.
533
557
. 10.1017/S0022112072002502
8.
Kristoffersen
,
R.
, and
Andersson
,
H.
,
1993
, “
Direct Simulations of Low-Reynolds-Number Turbulent Flow in a Rotating Channel
,”
J. Fluid Mech.
,
256
, pp.
163
197
. 10.1017/S0022112093002757
9.
Lamballais
,
E.
,
Lesieur
,
M.
, and
Métais
,
O.
,
1996
, “
Effects of Spanwise Rotation on the Vorticity Stretching in Transitional and Turbulent Channel Flow
,”
Int. J. Heat Fluid Flow
,
17
(
3
), pp.
324
332
. 10.1016/0142-727X(96)00043-4
10.
Di Sante
,
A.
,
Theunissen
,
R.
, and
Van Den Braembussche
,
R. A.
,
2008
, “
A New Facility for Time-Resolved PIV Measurements in Rotating Channels
,”
Exp. Fluids
,
44
(
2
), pp.
179
188
. 10.1007/s00348-007-0389-9
11.
Coletti
,
F.
,
Maurer
,
T.
,
Arts
,
T.
, and
Di Sante
,
A.
,
2012
, “
Flow Field Investigation in Rotating Rib-Roughened Channel by Means of Particle Image Velocimetry
,”
Exp. Fluids
,
52
(
4
), pp.
1043
1061
. 10.1007/s00348-011-1191-2
12.
Schønfeld
,
T.
, and
Rudgyard
,
M.
,
1999
, “
Steady and Unsteady Flows Simulations Using the Hybrid Flow Solver Avbp
,”
AIAA J.
,
37
(
11
), pp.
1378
1385
. 10.2514/2.636
13.
Gicquel
,
L.
,
Gourdain
,
N.
,
Boussuge
,
J.-F.
,
Deniau
,
H.
,
Staffelbach
,
G.
,
Wolf
,
P.
, and
Poinsot
,
T.
,
2011
, “
High Performance Parallel Computing of Flows in Complex Geometries
,”
Comptes Rendus Mécanique
,
339
(
2–3
), pp.
104
124
. 10.1016/j.crme.2010.11.006
14.
Colin
,
O.
, and
Rudgyard
,
M.
,
2000
, “
Development of High-Order Taylor-Galerkin Schemes for Unsteady Calculations
,”
J. Comput. Phys.
,
162
(
2
), pp.
338
371
. 10.1006/jcph.2000.6538
15.
Donea
,
J.
, and
Huerta
,
A.
,
2003
,
Finite Element Methods for Flow Problems
,
John Wiley & Sons Inc
,
New York
.
16.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient
,”
Flow Turb. Combust.
,
62
(
3
), pp.
183
200
. 10.1023/A:1009995426001
17.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cornell University, New York
.
18.
Poinsot
,
T.
, and
Lele
,
S.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
. 10.1016/0021-9991(92)90046-2
19.
Granet
,
V.
,
Vermorel
,
O.
,
Leonard
,
T.
,
Gicquel
,
L.
, and
Poinsot
,
T.
,
2010
, “
Comparison of Nonreflecting Outlet Boundary Conditions for Compressible Solvers on Unstructured Grids
,”
AIAA J.
,
48
(
10
), pp.
2348
2364
. 10.2514/1.J050391
20.
Scholl
,
S.
,
Verstraete
,
T.
,
Duchaine
,
F.
, and
Gicquel
,
L.
,
2016
, “
Conjugate Heat Transfer of a Rib-Roughened Internal Turbine Blade Cooling Channel Using Large Eddy Simulation
,”
Int. J. Heat Fluid Flow
,
61
(
B
), pp.
650
664
. 10.1016/j.ijheatfluidflow.2016.07.009
21.
Grosnickel
,
T.
,
Duchaine
,
F.
,
Gicquel
,
L.
, and
Koupper
,
C.
,
2017
, “
Large-Eddy Simulations of Static and Rotating Ribbed Channels in Adiabatic and Isothermal Conditions
,”
Proceedings of ASME Turbo Expo 2017: Turbine Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
.
22.
Hirt
,
C. W.
,
Amsden
,
A. A.
, and
Cook
,
J. L.
,
1974
, “
An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds
,”
J. Comput. Phys.
,
14
(
3
), pp.
227
253
. 10.1016/0021-9991(74)90051-5
23.
Moureau
,
V.
,
Lartigue
,
G.
,
Sommerer
,
Y.
,
Angelberger
,
C.
,
Colin
,
O.
, and
Poinsot
,
T.
,
2005
, “
Numerical Methods for Unsteady Compressible Multi-Component Reacting Flows on Fixed and Moving Grids
,”
J. Comput. Phys.
,
202
(
2
), pp.
710
736
. 10.1016/j.jcp.2004.08.003
24.
Murata
,
A.
, and
Mochizuki
,
S.
,
2000
, “
Large Eddy Simulation With a Dynamic Subgrid-Scale Model of Turbulent Heat Transfer in An Orthogonally Rotating Rectangular Duct With Transverse Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
43
(
7
), pp.
1243
1259
. 10.1016/S0017-9310(99)00205-7
25.
Qin
,
Z.
, and
Pletcher
,
R. H.
,
2006
, “
Large Eddy Simulation of Turbulent Heat Transfer in a Rotating Square Duct
,”
Int. J. Heat Fluid Flow
,
27
(
3
), pp.
371
390
. 10.1016/j.ijheatfluidflow.2006.01.003
26.
Ahn
,
J.
,
Choi
,
H.
, and
Lee
,
J. S.
,
2007
, “
Large Eddy Simulation of Flow and Heat Transfer in a Rotating Ribbed Channel
,”
Int. J. Heat Mass Transfer
,
50
(
25–26
), pp.
4937
4947
. 10.1016/j.ijheatmasstransfer.2007.03.049
27.
Elyyan
,
M. A.
, and
Tafti
,
D. K.
,
2010
, “
Investigation of Coriolis Forces Effect of Flow Structure and Heat Transfer Distribution in a Rotating Dimpled Channel
,”
ASME Conf. Proc.
,
2010
(
43994
), pp.
245
254
. 10.1115/gt2010-22657
28.
Sewall
,
E. A.
, and
Tafti
,
D. K.
,
2008
, “
Large Eddy Simulation of Flow and Heat Transfer in the Developing Flow Region of a Rotating Gas Turbine Blade Internal Cooling Duct With Coriolis and Buoyancy Forces
,”
ASME J. Turbomach.
,
130
(
1
), p.
011005
. 10.1115/1.2437779
29.
Coletti
,
F.
,
Jacono
,
D. L.
,
Cresci
,
I.
, and
Arts
,
T.
,
2014
, “
Turbulent Flow in Rib-Roughened Channel Under the Effect of Coriolis and Rotational Buoyancy Forces
,”
Phys. Fluids
,
26
(
4
), p.
045111
. 10.1063/1.4871019
30.
Fenot
,
M.
,
Dorignac
,
E.
, and
Vullierme
,
J. J.
,
2008
, “
An Experimental Study on Hot Round Jets Impinging a Concave Surface
,”
Int. J. Heat Fluid Flow
,
29
(
4
), pp.
945
956
. 10.1016/j.ijheatfluidflow.2008.03.015
31.
Saric
,
W. S.
,
1994
, “
Görtler Vortices
,”
Annu. Rev. Fluid Mech.
,
26
, pp.
379
409
. 10.1146/annurev.fl.26.010194.002115
32.
Borello
,
D.
,
Salvagni
,
A.
, and
Hanjalic
,
K.
,
2015
, “
Effects of Rotation on Flow in An Asymmetric Rib-Roughened Duct: LES Study
,”
Int. J. Heat Fluid Flow
,
55
, pp.
104
119
. 10.1016/j.ijheatfluidflow.2015.07.012
33.
Mayo
,
I.
,
Arts
,
T.
, and
Gicquel
,
L.
,
2018
, “
The Three-Dimensional Flow Field and Heat Transfer in a Rib-Roughened Channel At Large Rotation Numbers
,”
Int. J. Heat Mass Transfer
,
123
, pp.
848
866
. 10.1016/j.ijheatmasstransfer.2018.03.009
34.
Salvagni
,
A.
,
Borello
,
D.
,
Rispoli
,
F.
, and
Hanjalic
,
K.
,
2017
, “
Large-Eddy Simulations of Heat Transfer in Asymmetric Rib-Roughened Ducts: Effects of Rotation
,”
Int. J. Heat Fluid Flow
,
68
, pp.
373
385
. 10.1016/j.ijheatfluidflow.2017.09.019
You do not currently have access to this content.