Abstract

The shaped hole is the significant advancement for improving film cooling that has been practically achieved. This present study puts forward a new design combining the vortex generator (VG) with the shaped hole (FV). To investigate the effect of the new design, experiments were carried out to measure the film cooling performance of the four different configurations including the baseline cylindrical hole (CH) model, the model combing the cylindrical hole with VG (CV), shaped hole model (FAN), and FV model, at the blowing ratio varying at M = 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 by the infrared camera. Experimental results show that the FV model performs the best among the four models at each blowing ratio. The FV model could improve the area-averaged film effectiveness at most 25.5% than that of the CH model at M = 2.0. Moreover, the FV model could improve the area-averaged film cooling effectiveness at most 431% than that of the CH model at M = 3.0. Besides, the aerodynamic analysis of the four models at different blowing ratios was carried out by the numerical study. The simulation results show that the introduction of VG causes slightly more aerodynamic loss while the fan-shaped hole improves it. The aerodynamic performance of the FV model is almost the same as the CH model when M < 2 and smaller than that of the CH model when M > 2.

References

References
1.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Adv. Heat Transfer
,
7
, pp.
321
379
. 10.1016/S0065-2717(08)70020-0
2.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
. 10.2514/1.18034
3.
Han
,
J.-C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
4.
Yao
,
Y.
,
Petty
,
D.
,
Barrington
,
P.
,
Yao
,
J.
, and
Mason
,
P.
,
2006
, “
Direct Numerical Simulation of Jets in Cross-Flow
,”
Int J. Comput. Fluid Dyn.
,
20
(
5
), pp.
279
285
. 10.1080/10618560600909945
5.
Maidi
,
M.
, and
Yao
,
Y.
,
2008
, “
Numerical Visualization of Vortex Flow Behavior in Square Jets in Cross-Flow
,”
J. visualization
,
11
(
4
), pp.
319
327
. 10.1007/BF03182200
6.
Tyagi
,
M.
, and
Acharya
,
S.
,
2003
, “
Large Eddy Simulation of Film Cooling Flow From an Inclined Cylindrical Jet
,”
ASME J. Turbomach.
,
125
(
4
), p.
734
742
. 10.1115/1.1625397
7.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Bogard
,
D.
,
2011
, “
A Film-Cooling Correlation for Shaped Holes on a Flat-Plate Surface
,”
ASME J. Turbomach.
,
133
(
1
), p.
011002
. 10.1115/1.4002064
8.
Camussi
,
R.
,
Guj
,
G.
, and
Stella
,
A.
,
2002
, “
Experimental Study of a Jet in a Crossflow at Very Low Reynolds Number
,”
J. Fluid Mech.
,
454
, pp.
113
144
. 10.1017/S0022112001007005
9.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
. 10.1115/1.1860562
10.
Haven
,
B. A.
,
Yamagata
,
D. K.
,
Kurosaka
,
M.
,
Yamawaki
,
S.
, and
Maya
,
T.
,
1997
, “
Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness
,”
ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
,
Orlando, FL
,
June 2–5
, p.
V003T09A007
.
11.
Heneka
,
C.
,
Schulz
,
A.
,
Bauer
,
H.-J.
,
Heselhaus
,
A.
, and
Crawford
,
M. E.
,
2012
, “
Film Cooling Performance of Sharp Edged Diffuser Holes With Lateral Inclination
,”
ASME J. Turbomach.
,
134
(
4
), p.
041015
. 10.1115/1.4003726
12.
Davidson
,
F. T.
,
KistenMacher
,
D. A.
, and
Bogard
,
D. G.
,
2014
, “
Film Cooling With a Thermal Barrier Coating: Round Holes, Craters, and Trenches
,”
ASME J. Turbomach.
,
136
(
4
), p.
041007
. 10.1115/1.4024883
13.
Lee
,
K.-D.
, and
Kim
,
K.-Y.
,
2010
, “
Shape Optimization of a Fan-Shaped Hole to Enhance Film-Cooling Effectiveness
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
2996
3005
. 10.1016/j.ijheatmasstransfer.2010.03.032
14.
Javadi
,
A.
,
Javadi
,
K.
,
Taeibi-Rahni
,
M.
, and
Darbandi
,
M.
,
2003
, “
A New Approach to Improve Film Cooling Effectiveness Using Combined Jets
,”
Momentum
,
2
, p.
2
.
15.
Javadi
,
K.
,
Taeibi-Rahni
,
M.
, and
Darbandi
,
M.
,
2007
, “
Jet-Into-Crossflow Boundary-Layer Control: Innovation in Gas Turbine Blade Cooling
,”
AIAA J.
,
45
(
12
), pp.
2910
2925
. 10.2514/1.28770
16.
Heidmann
,
J. D.
, and
Ekkad
,
S.
,
2008
, “
A Novel Antivortex Turbine Film-Cooling Hole Concept
,”
ASME J. Turbomach.
,
130
(
3
), p.
031020
. 10.1115/1.2777194
17.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2007
, “
Double-Jet Ejection of Cooling Air for Improved Film Cooling
,”
ASME J. Turbomach.
,
129
(
4
), pp.
809
815
. 10.1115/1.2720508
18.
Kusterer
,
K.
,
Elyas
,
A.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2011
, “
The Nekomimi Cooling Technology: Cooling Holes With Ears for High-Efficient Film Cooling
,”
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers
,
Vancouver, British Columbia, Canada
,
June 6–10
, pp.
303
313
.
19.
Bons
,
J.
,
Rivir
,
R.
,
MacArthur
,
C.
, and
Pestian
,
D.
,
1995
, “
The Effect of Unsteadiness on Film Cooling Effectiveness
,”
33rd Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
AIAA Paper No. 95-0306
.
20.
Coulthard
,
S. M.
,
Volino
,
R. J.
, and
Flack
,
K. A.
,
2006
, “
Effect of Jet Pulsing on Film Cooling—Part I: Effectiveness and Flow-Field Temperature Results
,”
ASME J. Turbomach.
,
129
(
2
), pp.
232
246
. 10.1115/1.2437231
21.
Sultan
,
Q.
,
Lalizel
,
G.
,
Fénot
,
M.
, and
Dorignac
,
E.
,
2016
, “
Influence of Coolant Jet Pulsation on the Convective Film Cooling of an Adiabatic Wall
,”
ASME J. Heat Transfer
,
139
(
2
), p.
022201
. 10.1115/1.4034773
22.
Titchener
,
N.
, and
Babinsky
,
H.
,
2015
, “
A Review of the Use of Vortex Generators for Mitigating Shock-Induced Separation
,”
Shock Waves
,
25
(
5
), pp.
473
494
. 10.1007/s00193-015-0551-x
23.
Biswas
,
G.
,
Mitra
,
N. K.
, and
Fiebig
,
M.
,
1994
, “
Heat Transfer Enhancement in Fin-Tube Heat Exchangers by Winglet Type Vortex Generators
,”
Int. J. Heat Mass Transfer
,
37
(
2
), pp.
283
291
. 10.1016/0017-9310(94)90099-X
24.
Chyu
,
M. K.
,
Yu
,
Y.
,
Ding
,
H.
,
Downs
,
J. P.
, and
Soechting
,
F. O.
,
1997
, “
Concavity Enhanced Heat Transfer in an Internal Cooling Passage
,”
ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
,
Orlando, FL
,
June 2–5
, p.
V003T09A080
.
25.
Rigby
,
D. L.
, and
Heidmann
,
J. D.
,
2008
, “
Improved Film Cooling Effectiveness by Placing a Vortex Generator Downstream of Each Hole
,”
ASME Turbo Expo 2008: Power for Land, Sea, and Air, American Society of Mechanical Engineers
,
Berlin, Germany
,
June 9–13
, pp.
1161
1174
.
26.
Zaman
,
K. B. M. Q.
,
Rigby
,
D. L.
, and
Heidmann
,
J. D.
,
2010
, “
Inclined Jet in Crossflow Interacting With a Vortex Generator
,”
J. Propul. Power
,
26
(
5
), pp.
947
954
. 10.2514/1.49742
27.
Shinn
,
A. F.
, and
Vanka
,
S. P.
,
2013
, “
Large Eddy Simulations of Film-Cooling Flows With a Micro-Ramp Vortex Generator
,”
ASME J. Turbomach.
,
135
(
1
), p.
011004
. 10.1115/1.4006329
28.
Song
,
L.
,
Zhang
,
C.
,
Song
,
Y.
,
Li
,
J.
, and
Feng
,
Z.
,
2017
, “
Experimental Investigations on the Effects of Inclination Angle and Blowing Ratio on the Flat-Plate Film Cooling Enhancement Using the Vortex Generator Downstream
,”
Appl. Therm. Eng.
,
119
, pp.
573
584
. 10.1016/j.applthermaleng.2017.03.089
29.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2014
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20
, p.
V05BT13A036
.
30.
Whitfield
,
C. A.
,
Schroeder
,
R. P.
,
Thole
,
K. A.
, and
Lewis
,
S. D.
,
2015
, “
Blockage Effects From Simulated Thermal Barrier Coatings for Cylindrical and Shaped Cooling Holes
,”
ASME J. Turbomach.
,
137
(
9
), p.
091004
. 10.1115/1.4029879
31.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid. Sci.
,
1
(
1
), pp.
3
17
. 10.1016/0894-1777(88)90043-X
32.
Yang
,
X.
,
Liu
,
Z.
, and
Feng
,
Z.
,
2015
, “
Numerical Evaluation of Novel Shaped Holes for Enhancing Film Cooling Performance
,”
ASME J. Heat Transfer
,
137
(
7
), p.
071701
. 10.1115/1.4029817
33.
Gräf
,
L.
, and
Kleiser
,
L.
,
2013
, “
Film Cooling Using Antikidney Vortex Pairs: Effect of Blowing Conditions and Yaw Angle on Cooling and Losses
,”
ASME J. Turbomach.
,
136
(
1
), p.
011008
. 10.1115/1.4024648
This content is only available via PDF.
You do not currently have access to this content.