Abstract

Three-dimensional corner separation significantly affects compressor performance, but turbulence models struggle to predict it accurately. This paper assesses the capability of the original shear stress transport (SST) turbulence model to predict the corner separation in a linear highly loaded prescribed velocity distribution (PVD) compressor cascade. Modifications for streamline curvature, Menter’s production limiter, and the Kato-Launder production term are examined. Comparisons with experimental data show that the original SST model and the SST model with different modifications can predict the corner flow well at an incidence angle of −7 deg, where the corner separation is small. However, all the models overpredict the extent of the flow separation when the corner separation is larger, at an incidence angle of 0 deg. The SST model is then modified using the helicity to take account of the energy backscatter, which previous studies have shown to be important in the corner separation regions of compressors. A Reynolds stress model (RSM) is also used for comparison. By comparing the numerical results with experiments and RSM results, it can be concluded that sensitizing the SST model to helicity can greatly improve the predictive accuracy for simulating the corner separation flow. The accuracy is quite competitive with the RSM, whereas in terms of computational cost and robustness it is superior to the RSM.

References

1.
Lei
,
V. M.
,
Spakovszky
,
Z. S.
, and
Greitzer
,
E. M.
,
2008
, “
A Criterion for Axial Compressor Hub-Corner Stall
,”
ASME J. Turbomach.
,
130
(
3
), p.
031006
. 10.1115/1.2775492
2.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
. 10.1115/1.2929299
3.
Gbadebo
,
S. A.
,
Hynes
,
T. P.
, and
Cumpsty
,
N. A.
,
2004
, “
Influence of Surface Roughness on Three-Dimensional Separation in Axial Compressors
,”
ASME J. Turbomach.
,
126
(
4
), pp.
455
463
. 10.1115/1.1791281
4.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
2005
, “
Three-Dimensional Separations in Axial Compressors
,”
ASME J. Turbomach.
,
127
(
2
), pp.
331
339
. 10.1115/1.1811093
5.
Courtiade
,
N.
, and
Ottavy
,
X.
,
2013
, “
Experimental Study of Surge Precursors in a High-Speed Multistage Compressor
,”
ASME J. Turbomach.
,
135
(
6
), p.
061018
. 10.1115/1.4023462
6.
Liu
,
Y. W.
,
Yan
,
H.
, and
Lu
,
L. P.
,
2016
, “
Numerical Study of the Effect of Secondary Vortex on Three-Dimensional Corner Separation in a Compressor Cascade
,”
Int. J. Turbo Jet Eng.
,
33
(
1
), pp.
9
18
. 10.1515/tjj-2014-0039
7.
Liu
,
Y. W.
,
Lu
,
L. P.
,
Fang
,
L.
, and
Gao
,
F.
,
2011
, “
Modification of Spalart-Allmaras Model With Consideration of Turbulence Energy Backscatter Using Velocity Helicity
,”
Phys. Lett. A
,
375
(
24
), pp.
2377
2381
. 10.1016/j.physleta.2011.05.023
8.
Scillitoe
,
A. D.
,
Tucker
,
P. G.
, and
Adami
,
P.
,
2015
, “
Evaluation of RANS and ZDES Methods for the Prediction of Three-Dimensional Separation in Axial Flow Compressors
,”
ASME
Paper No. GT2015-43975
. 10.1115/gt2015-43975
9.
Liu
,
Y. W.
,
Yan
,
H.
,
Fang
,
L.
,
Lu
,
L. P.
,
Li
,
Q. S.
, and
Shao
,
L.
,
2016
, “
Modified k-ω Model Using Kinematic Vorticity for Corner Separation in Compressor Cascade
,”
Sci. China Technol. Sci.
,
59
(
5
), pp.
795
806
. 10.1007/s11431-015-6005-y
10.
Liu
,
Y. W.
,
Yan
,
H.
,
Liu
,
Y. J.
,
Lu
,
L. P.
, and
Li
,
Q. S.
,
2016
, “
Numerical Study of Corner Separation in a Linear Compressor Cascade Using Various Turbulence Models
,”
Chin. J. Aeronaut.
,
29
(
3
), pp.
639
652
. 10.1016/j.cja.2016.04.013
11.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
2008
, “
Control of Three-Dimensional Separations in Axial Compressor by Tailored Boundary Layer Suction
,”
ASME J. Turbomach.
,
130
(
1
), p.
011004
. 10.1115/1.2749294
12.
Evans
,
S.
,
Hodson
,
H.
,
Hynes
,
T.
, and
Wakelam
,
C.
,
2010
, “
Flow Control in a Compressor Cascade at High Incidence
,”
AIAA J. Propul. Power
,
26
(
4
), pp.
828
836
. 10.2514/1.48054
13.
Liu
,
Y. W.
,
Sun
,
J. J.
, and
Lu
,
L. P.
,
2014
, “
Corner Separation Control by Boundary Layer Suction Applied to a Highly Loaded Axial Compressor Cascade
,”
Energies
,
7
(
12
), pp.
7994
8007
. 10.3390/en7127994
14.
Staats
,
M.
, and
Nitsche
,
W.
,
2016
, “
Active Control of the Corner Separation on a Highly Loaded Compressor Cascade With Periodic Nonsteady Boundary Conditions by Means of Fluidic Actuators
,”
ASME J. Turbomach.
,
138
(
3
), p.
031004
. 10.1115/1.4031934
15.
Liu
,
Y. W.
,
Sun
,
J. J.
,
Tang
,
Y. M.
, and
Lu
,
L. P.
,
2016
, “
Effect of Slot at Blade Root on Compressor Cascade Performance Under Different Aerodynamic Parameters
,”
Appl. Sci.
,
6
(
12
), p.
421
. 10.3390/app6120421
16.
Denton
,
J. D.
,
2010
, “
Some Limitations of Turbomachinery CFD
,”
ASME Paper No. GT2010-22540
.
17.
Yan
,
H.
,
Liu
,
Y. W.
,
Li
,
Q. S.
, and
Lu
,
L. P.
,
2018
, “
Turbulence Characteristics in Corner Separation in a Highly Loaded Linear Compressor Cascade
,”
Aerosp. Sci. Technol.
,
75
, pp.
139
154
. 10.1016/j.ast.2018.01.015
18.
Scillitoe
,
A. D.
,
Tucker
,
P. G.
, and
Adami
,
P.
,
2017
, “
Numerical Investigation of Three-Dimensional Separation in an Axial Flow Compressor: the Influence of Freestream Turbulence Intensity and Endwall Boundary Layer State
,”
ASME J. Turbomach.
,
139
(
2
), p.
021011
. 10.1115/1.4034797
19.
Liu
,
Y. W.
,
Yan
,
H.
,
Lu
,
L. P.
, and
Li
,
Q. S.
,
2017
, “
Investigation of Vortical Structures and Turbulence Characteristics in Corner Separation in a Linear Compressor Cascade Using DDES
,”
ASME J. Fluids Eng.
,
139
(
2
), p.
021107
. 10.1115/1.4034871
20.
Lin
,
D.
,
Su
,
X. R.
, and
Yuan
,
X.
,
2018
, “
DDES Analysis of the Wake Vortex Related Unsteadiness and Losses in the Environment of a High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
140
(
4
), p.
041001
. 10.1115/1.4038736
21.
Liu
,
Y. W.
,
Zhong
,
L. Y.
, and
Lu
,
L. P.
,
2019
, “
Comparison of DDES and URANS for Unsteady Tip Leakage Flow in an Axial Compressor Rotor
,”
ASME J. Fluids Eng.
,
141
(
12
), p.
121405
. 10.1115/1.4043774
22.
Spalart
,
P. R.
,
2012
,
Progress in Hybrid RANS-LES Modelling
,
Springer-Verlag
,
Berlin
, pp.
7
24
.
23.
Liu
,
Y. W.
,
Tang
,
Y. M.
,
Liu
,
B. J.
, and
Lu
,
L. P.
,
2019
, “
An Exponential Decay Model for the Deterministic Correlations in Axial Compressors
,”
ASME J. Turbomach.
,
141
(
2
), p.
021005
. 10.1115/1.4041380
24.
Liu
,
Y. W.
,
Yu
,
X. J.
, and
Liu
,
B. J.
,
2008
, “
Turbulence Models Assessment for Large-Scale Tip Vortices in an Axial Compressor Rotor
,”
AIAA J. Propul. Power
,
24
(
1
), pp.
15
25
. 10.2514/1.26134
25.
Dunham
,
J.
,
1998
, “
CFD Validation for Propulsion System Components
,”
AGARD-AR-355
.
26.
Xie
,
Z.
,
Liu
,
Y. W.
,
Liu
,
X. H.
,
Lu
,
L. P.
, and
Sun
,
X. F.
,
2019
, “
Effect of RANS Method on the Stall Onset Prediction by an Eigenvalue Approach
,”
ASME J. Fluids Eng.
,
141
(
3
), p.
031401
. 10.1115/1.4041362
27.
Ma
,
L.
,
Lu
,
L. P.
,
Fang
,
J.
, and
Wang
,
Q. H.
,
2014
, “
A Study on Turbulence Transportation and Modification of Spalart-Allmaras Model for Shock-Wave/Turbulent Boundary Layer Interaction Flow
,”
Chin. J. Aeronaut.
,
27
(
2
), pp.
200
209
. 10.1016/j.cja.2014.02.008
28.
Liu
,
Y. W.
,
Wu
,
J. N.
, and
Lu
,
L. P.
,
2016
, “
Performance of Turbulence Models for Transonic Flows in a Diffuser
,”
Mod. Phys. Lett. B
,
30
(
25
), p.
1650326
. 10.1142/S0217984916503267
29.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Recherche Aerospatiale
,
1
(
1
), pp.
5
21
. 10.2514/6.1992-439
30.
Spalart
,
P.
, and
Shur
,
M.
,
1997
, “
On the Sensitization of Turbulence Models to Rotation and Curvature
,”
Aerosp. Sci. Technol.
,
1
(
5
), pp.
297
302
. 10.1016/S1270-9638(97)90051-1
31.
Spalart
,
P. R.
,
2000
, “
Strategies for Turbulence Modelling and Simulations
,”
Int. J. Heat Fluid Flow
,
21
(
3
), pp.
252
263
. 10.1016/S0142-727X(00)00007-2
32.
Rung
,
T.
,
Bunge
,
U.
,
Schatz
,
M.
, and
Thiele
,
F.
,
2003
, “
Restatement of the Spalart-Allmaras Eddy-Viscosity Model in Strain-Adaptive Formulation
,”
AIAA J.
,
41
(
7
), pp.
1396
1399
. 10.2514/2.2089
33.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience with the SST Turbulence Model
,”
Turbul. Heat Mass Transfer
,
4
(
4
), pp.
625
632
.
34.
Menter
,
F. R.
,
1994
, “
Two-equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
269
289
. 10.2514/3.12149
35.
Smirnov
,
P. E.
, and
Menter
,
F. R.
,
2009
, “
Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart–Shur Correction Term
,”
ASME J. Turbomach.
,
131
(
4
), p.
041010
. 10.1115/1.3070573
36.
Brissaud
,
A.
,
Frisch
,
U.
,
Leorat
,
J.
, and
Lesieur
,
M.
,
1973
, “
Helicity Cascades in Fully Developed Isotropic Turbulence
,”
Phys. Fluids
,
16
(
8
), pp.
1366
1367
. 10.1063/1.1694520
37.
Kraichnan
,
R. H.
,
1973
, “
Helical Turbulence and Absolute Equilibrium
,”
J. Fluid Mech.
,
59
(
4
), pp.
745
752
. 10.1017/S0022112073001837
38.
Biferale
,
L.
,
Musacchio
,
S.
, and
Toschi
,
F.
,
2012
, “
Inverse Energy Cascade in Three-Dimensional Isotropic Turbulence
,”
Phys. Rev. Lett.
,
108
(
16
), p.
164501
. 10.1103/physrevlett.108.164501
39.
Moffatt
,
H. K.
,
1969
, “
The Degree of Knottedness of Tangled Vortex Lines
,”
J. Fluid Mech.
,
35
(
1
), pp.
117
129
. 10.1017/S0022112069000991
40.
Scheeler
,
M. W.
,
Van Rees
,
W. M.
,
Kedia
,
H.
,
Kleckner
,
D.
, and
Irvine
W. T. M.
,
2017
, “
Complete Measurement of Helicity and its Dynamics in Vortex Tubes
,”
Science
,
367
(
6350
), pp.
487
491
. 10.1126/science.aam6897
41.
Moffatt
,
H. K.
,
2017
, “
Helicity-Invariant Even in a Viscous Fluid
,”
ASME J. Tribol.
,
357
(
6350
), pp.
448
449
. 10.1126/science.aao1428
42.
Belian
,
A.
,
Chkhetiani
,
O.
,
Golbraikh
,
E.
, and
Moiseev
,
S.
,
1998
, “
Helical Turbulence: Turbulent Viscosity and Instability of the Second Moments
,”
Physica A
,
258
(
1
), pp.
55
68
. 10.1016/s0378-4371(98)00212-x
43.
Tang
,
Y. M.
,
Liu
,
Y. W.
, and
Lu
,
L. P.
,
2018
, “
Solidity Effect on Corner Separation and Its Control in a High-Speed Low Aspect Ratio Compressor Cascade
,”
Int. J. Mech. Sci.
,
142
, pp.
304
321
. 10.1016/j.ijmecsci.2018.04.048
44.
Lee
,
K. B.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2018
, “
Validation of a Numerical Model for Predicting Stalled Flows in a Low-Speed Fan-Part I: Modification of Spalart-Allmaras Turbulence Model
,”
ASME J. Turbomach.
,
140
(
5
), p.
051008
. 10.1115/1.4039051
45.
Kim
,
S.
,
Pullan
,
G.
,
Hall
,
C. A.
,
Grewe
,
R. P.
,
Wilson
,
M. J.
, and
Gunn
,
E.
,
2019
, “
Stall Inception in Low Pressure Ratio Fans
,”
ASME J. Turbomach.
,
141
(
7
), p.
071005
. 10.1115/1.4042731
46.
Kato
,
M.
, and
Launder
,
B. E.
,
1993
, “
The Modelling of Turbulent Flow Around Stationary and Vibrating Square Cylinders
,”
Ninth Symposium on Turbulent Shear Flows
,
No. 10-4, Kyoto, Japan
,
Aug. 16–18
.
47.
Barth
,
T. J.
, and
Jespersen
,
D.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
AIAA 27th Aerospace Sciences Meeting
,
Reno, Nevada
,
Technical Report AIAA-89-0366
.
48.
Gbadebo
,
S. A.
,
2004
, “
Three-dimensional Separations in Compressors
,”
Doctoral thesis
,
University of Cambridge
,
UK
, https://doi.org/10.17863/CAM.7010
49.
Gibson
,
M. M.
, and
Launder
,
B. E.
,
1978
, “
Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer
,”
J. Fluid Mech.
,
86
(
3
), pp.
491
511
. 10.1017/S0022112078001251
50.
Ditlevson
,
P.
, and
Guiliani
,
P.
,
2001
, “
Cascade in Helical Turbulence
,”
Phys. Rev. E
,
63
(
3
), p.
036314
. 10.1103/physreve.63.036304
51.
Tang
,
Y. M.
,
Liu
,
Y. W.
, and
Lu
,
L. P.
,
2019
, “
Evaluation of Compressor Blading with Blade End Slots and Full-Span Slots in a Highly Loaded Compressor Cascade
,”
ASME J. Turbomach.
,
141
(
12
), p.
121002
. 10.1115/1.4044693
You do not currently have access to this content.