The effect of film cooling on a transonic squealer tip has been examined in a high speed linear cascade, which operates at engine-realistic Mach and Reynolds numbers. Tests have been performed on two uncooled tip geometries with differing pressure side rim edge radii, and a cooled tip matching one of the uncooled cases. The pressure sensitive paint technique has been used to measure adiabatic film cooling effectiveness on the blade tip at a range of tip gaps and coolant mass flow rates. Complementary tip heat transfer coefficients have been measured using transient infrared thermography, and the effects of the coolant film on the tip heat transfer and engine heat flux were examined. The uncooled data show that the tip heat transfer coefficient distribution is governed by the nature of flow reattachments and impingements. The squealer tip can be broken down into three regions, each exhibiting a distinct response to a change in the tip gap, depending on the local behavior of the overtip leakage flow. Complementary computational fluid dynamics (CFD) shows that the addition of casing motion causes no change in the flow over the pressure side rim. Injected coolant interacts with the overtip leakage flow, which can locally enhance the tip heat transfer coefficient. The film effectiveness is dependent on both the coolant mass flow rate and tip clearance. At increased coolant mass flow, areas of high film effectiveness on the pressure side rim coincide strongly with a net heat flux reduction and in the subsonic tip region with low heat transfer coefficient.

References

References
1.
Bunker
,
R. S.
,
2004
, “
Blade Tip Heat Transfer and Cooling Techniques
,”
VKI Lecture Series
, Paper No. 2004-02.
2.
Yamamoto
,
A.
,
1988
, “
Interaction Mechanisms Between Tip Leakage Flow and the Passage Vortex in a Linear Turbine Rotor Cascade
,”
ASME J. Turbomach.
,
110
(
3
), pp.
329
338
.
3.
Moore
,
J.
, and
Tilton
,
J. S.
,
1988
, “
Tip Leakage Flow in a Linear Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
18
26
.
4.
Moore
,
J.
,
Moore
,
J. G.
,
Henry
,
G. S.
, and
Chaudhry
,
U.
,
1989
, “
Flow and Heat Transfer in Turbine Tip Gaps
,”
ASME J. Turbomach.
,
111
(
3
), pp.
301
309
.
5.
Vogel
,
J. C.
, and
Eaton
,
J. K.
,
1985
, “
Combined Heat Transfer and Fluid Dynamic Measurements Downstream of a Backward-Facing Step
,”
ASME J. Heat Transfer
,
107
(
4
), pp.
922
929
.
6.
Azad
,
G. S.
,
Han
,
J.-C.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
,
2002
, “
Effect of Squealer Geometry Arrangement on a Gas Turbine Blade Tip Heat Transfer
,”
ASME J. Heat Transfer
,
124
(
3
), pp.
452
459
.
7.
Kwak
,
J. S.
,
Ahn
,
J.
,
Han
,
J.-C.
,
Lee
,
C. P.
,
Bunker
,
R. S.
,
Boyle
,
R.
, and
Gaugler
,
R.
,
2003
, “
Heat Transfer Coefficients on the Squealer Tip and Near-Tip Regions of a Gas Turbine Blade With Single or Double Squealer
,”
ASME J. Turbomach.
,
125
(
4
), pp.
778
787
.
8.
Acharya
,
S.
,
Yang
,
H.
,
Prakash
,
C.
, and
Bunker
,
R. S.
,
2003
, “
Numerical Study of Flow and Heat Transfer on a Blade Tip With Different Leakage Reduction Strategies
,”
ASME Turbo Expo 2003, Collocated With the 2003 International Joint Power Generation Conference
,
Atlanta, GA
,
June 16–19
, pp.
471
480
.
9.
Ahn
,
J.
,
Mhetras
,
S.
, and
Han
,
J.-C.
,
2005
, “
Film-Cooling Effectiveness on a Gas Turbine Blade Tip Using Pressure-Sensitive Paint
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
521
530
.
10.
Narzary
,
D.
,
Liu
,
K.
,
Han
,
J.-C.
,
Mhetras
,
S.
, and
Landis
,
K.
,
2014
, “
Turbine Blade Tip Film-Cooling and Heat Transfer Measurements at High Blowing Ratios
,”
ASME Turbo Expo
,
Dusseldorf, Germany
,
June 16–20
, Paper No. GT2014-25793, p.
V05BT13A025
.
11.
Mhetras
,
S.
,
Narzary
,
D.
,
Gao
,
Z.
, and
Han
,
J.-C.
,
2008
, “
Effect of a Cutback Squealer and Cavity Depth on Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
,
130
(
2
), p.
021002
.
12.
Wheeler
,
A. P. S.
,
Atkins
,
N. R.
, and
He
,
L.
,
2011
, “
Turbine Blade Tip Heat Transfer in Low Speed and High Speed Flows
,”
ASME J. Turbomach.
,
133
(
4
), p.
041025
.
13.
Bunker
,
R. S.
,
Bailey
,
J. C.
, and
Ameri
,
A. A.
,
1999
, “
Heat Transfer and Flow on the First-Stage Blade Tip of a Power Generation Gas Turbine: Part 1—Experimental Results
,”
ASME J. Turbomach.
,
122
(
2
), pp.
263
271
.
14.
Zhang
,
Q.
,
O’Dowd
,
D. O.
,
He
,
L.
,
Oldfield
,
M. L. G.
, and
Ligrani
,
P. M.
,
2011
, “
Transonic Turbine Blade Tip Aerothermal Performance With Different Tip Gaps—Part I: Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041027
.
15.
Virdi
,
A. S.
,
Zhang
,
Q.
,
He
,
L.
,
Li
,
H. D.
, and
Hunsley
,
R.
,
2013
, “
Aerothermal Performance of Shroudless Turbine Blade Tips With Effects of Relative Casing Motion
,”
ASME 2013 Turbine Blade Tip Symposium
,
Hamburg, Germany
,
Sept. 30–Oct. 3
, Paper No. TBTS2013-2021, p.
V001T02A003
.
16.
O’Dowd
,
D. O.
,
Zhang
,
Q.
,
He
,
L.
,
Cheong
,
B. C. Y.
, and
Tibbott
,
I.
,
2012
, “
Aerothermal Performance of a Cooled Winglet at Engine Representative Mach and Reynolds Numbers
,”
ASME J. Turbomach.
,
135
(
1
), p.
011041
.
17.
Ma
,
H.
,
Zhang
,
Q.
,
He
,
L.
,
Wang
,
Z.
, and
Wang
,
L.
,
2016
, “
Cooling Injection Effect on a Transonic Squealer Tip: Part 1—Experimental Heat Transfer Results and CFD Validation
,”
ASME Turbo Expo 2016
,
Seoul, South Korea
,
June 13–17
, Paper No. GT2016-57579, p.
V05AT13A023
.
18.
Ma
,
H.
,
Zhang
,
Q.
,
He
,
L.
,
Wang
,
Z.
, and
Wang
,
L.
,
2017
, “
Cooling Injection Effect on a Transonic Squealer Tip—Part II: Analysis of Aerothermal Interaction Physics
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052507
.
19.
Arisi
,
A.
,
Phillips
,
J.
,
Ng
,
W. F.
,
Xue
,
S.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2016
, “
An Experimental and Numerical Study on the Aerothermal Characteristics of a Ribbed Transonic Squealer-Tip Turbine Blade With Purge Flow
,”
ASME J. Turbomach.
,
138
(
10
), p.
101007
.
20.
Zhang
,
Q.
,
He
,
L.
, and
Rawlinson
,
A.
,
2014
, “
Effects of Inlet Turbulence and End-Wall Boundary Layer on Aerothermal Performance of a Transonic Turbine Blade Tip
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
052603
.
21.
Gillespie
,
D. R. H.
,
Wang
,
Z.
, and
Ireland
,
P. T.
,
1995
, “
Heating Element
,” British Patent No. PCT/GB96/2017.
22.
O’Dowd
,
D. O.
,
Zhang
,
Q.
,
He
,
L.
,
Ligrani
,
P. M.
, and
Friedrichs
,
S.
,
2010
, “
Comparison of Heat Transfer Measurement Techniques on a Transonic Turbine Blade Tip
,”
ASME J. Turbomach.
,
133
(
2
), p.
021028
.
23.
Oldfield
,
M. L.
,
2008
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
,
130
(
2
), p.
021023
.
24.
Wong
,
T. H.
,
Ireland
,
P. T.
, and
Self
,
K. P.
,
2016
, “
Film Cooling Effectiveness Measurements on Trailing Edge Cutback Surface and Lands Following Novel Cross Corrugated Slot Geometry
,”
ASME Turbo Expo 2016
,
Seoul, South Korea
,
June 13–17
, Paper No. GT2016-57371, p.
V05CT19A024
.
25.
Quinn
,
M. K.
,
Gongora-Orozco
,
N.
,
Kontis
,
K.
, and
Ireland
,
P.
,
2013
, “
Application of Pressure-Sensitive Paint to Low-Speed Flow Around a U-Bend of Strong Curvature
,”
Exp. Therm. Fluid Sci.
,
48
(
Supplement C
), pp.
58
66
.
26.
Liu
,
T.
,
Guille
,
M.
, and
Sullivan
,
J. P.
,
2001
, “
Accuracy of Pressure-Sensitive Paint
,”
AIAA J.
,
39
(
1
), pp.
103
112
.
27.
Han
,
J.-C.
, and
Rallabandi
,
A.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
(
1
), pp.
013001
.
28.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
29.
Moinier
,
P.
, and
Giles
,
M.
,
1998
, “
Preconditioned Euler and Navier–Stokes Calculations on Unstructured Meshes
,”
6th ICFD Conference on Numerical Methods for Fluid Dynamics
,
Oxford
,
Mar. 31–April 3
, pp.
417
424
.
30.
O’Dowd
,
D. O.
,
Zhang
,
Q.
,
Usandizaga
,
I.
,
He
,
L.
, and
Ligrani
,
P. M.
,
2010
, “
Transonic Turbine Blade Tip Aero-Thermal Performance With Different Tip Gaps: Part II—Tip Aerodynamic Loss
,”
ASME Turbo Expo 2010: Power for Land, Sea and Air
,
Glasgow, UK
,
June 14–18
, Paper No. GT2010-22780, pp.
347
356
.
31.
Ameri
,
A. A.
, and
Bunker
,
R. S.
,
1999
, “
Heat Transfer and Flow on the First-Stage Blade Tip of a Power Generation Gas Turbine: Part 2—Simulation Results
,”
ASME J. Turbomach.
,
122
(
2
), pp.
272
277
.
32.
McGreehan
,
W. F.
, and
Schotsch
,
M. J.
,
1988
, “
Flow Characteristics of Long Orifices With Rotation and Corner Radiusing
,”
ASME J. Turbomach.
,
110
(
2
), pp.
213
217
.
33.
Heyes
,
F. J. G.
,
Hodson
,
H. P.
, and
Dailey
,
G. M.
,
1992
, “
The Effect of Blade Tip Geometry on the Tip Leakage Flow in Axial Turbine Cascades
,”
ASME J. Turbomach.
,
114
(
3
), pp.
643
651
.
34.
Christophel
,
J. R.
,
Thole
,
K. A.
, and
Cunha
,
F. J.
,
2005
, “
Cooling the Tip of a Turbine Blade Using Pressure Side Holes—Part II: Heat Transfer Measurements
,”
ASME J. Turbomach.
,
127
(
2
), pp.
278
286
.
35.
Acharya
,
S.
,
Kramer
,
G.
,
Moreaux
,
L.
, and
Nakamata
,
C.
,
2010
, “
Squealer Tip Heat Transfer With Film Cooling
,”
ASME Turbo Expo 2010: Power for Land, Sea and Air
,
Glasgow, UK
,
June 14–18
, Paper No. GT2010-23688, pp.
1869
1877
.
You do not currently have access to this content.