In this paper, we investigate the coupled interaction between a new short intake design with a modern fan in a high-bypass ratio civil engine, specifically under the off-design condition of high incidence. The interaction is expected to be much more significant than that on a conventional intake. The performance of both the intake-alone and rotor-alone configurations are examined under isolation. Subsequently, a comprehensive understanding on the two-way interaction between intake and fan is presented. This includes the effect of fan on intake angles of attack (AoA) tolerance (FoI) and the effect of circumferential and radial flow distortion induced by the intake on the fan performance (IoF). In the FoI scenario, the rotor effectively redistributes the mass flow at the fan-face. The AoA tolerance of the short-intake design has increased by ≈4 deg when compared with the intake-alone configuration. Dynamic nature of distortion due to shock unsteadiness has been quantified. ST plots and power spectral density (PSD) of pressure fluctuations show the existence of a spectral gap between the shock unsteadiness and blade passing, with almost an order of magnitude difference in the corresponding frequencies. In the IoF scenario, both the “large” (O(360 deg)) and “small” scale distortion (O(10–60 deg)) induced by the intake results in a non-uniform inflow to the rotor. Sector analysis reveals a substantial variation in the local operating condition of the fan as opposed to its steady characteristic. Streamline curvature, upwash, and wake thickening are identified to be the three key factors affecting the fan performance. These underlying mechanisms are discussed in detail to provide further insights into the physical understanding of the fan-intake interaction. In addition to the shock-induced separation on the intake lip, the current study shows that shorter intakes are much more prone to the upwash effect at higher AoA. Insufficient flow straightening along the engine axis is reconfirmed to be one of the limiting factors for the short-intake design.

References

References
1.
Hall
,
C. A.
, and
Crichton
,
D.
,
2007
, “
Engine Design Studies for a Silent Aircraft
,”
ASME J. Turbomach.
,
129
(
3
), pp.
479
487
.
2.
Cumpsty
,
N. A.
,
2010
, “
Preparing for the Future: Reducing Gas Turbine Environmental Impact—IGTI Scholar Lecture
,”
ASME J. Turbomach.
,
132
(
4
), p.
041017
.
3.
Peters
,
A.
,
Spakovszky
,
Z. S.
,
Lord
,
W. K.
, and
Rose
,
B.
,
2015
, “
Ultrashort Nacelles for Low Fan Pressure Ratio Propulsors
,”
ASME J. Turbomach.
,
137
(
2
), p.
021001
.
4.
Thollet
,
W.
,
Dufour
,
G.
,
Carbonneau
,
X.
, and
Blanc
,
F.
,
2016
, “
Body-Force Modeling for Aerodynamic Analysis of Air Intake–Fan Interactions
,”
Int. J. Num. Meth. Heat Fluid Flow
,
26
(
7
), pp.
2048
2065
.
5.
Lesser
,
A.
, and
Niehuis
,
R.
,
2014
, “
Transonic Axial Compressors With Total Pressure Inlet Flow Field Distortions
,”
Proceedings of ASME Turbo Expo
,
June 16–20
,
Dusseldorf, Germany
, p.
V01AT01A036
.
6.
Davis
,
M. W.
, and
Cousins
,
W. T.
,
2011
, “
Evaluating Complex Inlet Distortion With a Parallel Compressor Model: Part 2—Applications to Complex Patterns
,”
Proceedings of ASME Turbo Expo
,
June 6–10
,
Vancouver, Canada
, pp.
13
23
.
7.
Freeman
,
C.
, and
Rowe
,
A. L.
,
1999
, “
Intake Engine Interactions of a Modern Large Turbofan Engine
,”
ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition
,
June 7–9
,
Indianapolis, IN
, p.
V001T01A007
.
8.
Makuni
,
T. E.
,
Babinsky
,
H.
,
Slaby
,
M.
, and
Sheaf
,
C. T.
,
2015
, “
Shock Wave-Boundary-Layer Interactions in Subsonic Intakes at High Incidence
,”
53rd AIAA Aerospace Sciences Meeting
,
Jan. 5–9
,
Kissimmee, FL
, American Institute of Aeronautics and Astronautics.
9.
Coschignano
,
A.
,
Babinsky
,
H.
,
Sheaf
,
C.
, and
Zamboni
,
G.
,
2019
, “
Normal-Shock/Boundary-layer Interactions in Transonic Intakes At High Incidence
,”
AIAA J.
,
8
(
7
), pp.
1
14
.
10.
Hodder
,
B.
,
1981
, “
An Investigation of Engine Influence on Inlet Performance. [Conducted in the Ames 40-by 80-Foot Wind Tunnel]
,” NASA CR-166136.
11.
Larkin
,
M. J.
, and
Schweiger
,
P. S.
,
1992
, “
Ultra High Bypass Nacelle Aerodynamics Inlet Flow-Through High Angle of Attack Distortion Test
”. NASA Contractor Report CR - 189149.
12.
Cao
,
T.
,
Vadlamani
,
N. R.
,
Tucker
,
P. G.
,
Smith
,
A. R.
,
Slaby
,
M.
, and
Sheaf
,
C. T.
,
2017
, “
Fan-Iintake Interaction Under High Incidence
,”
ASME J. Eng. Gas. Turbines Power
,
139
(
4
), p.
041204
.
13.
Carnevale
,
M.
,
Wang
,
F.
, and
di Mare
,
L.
,
2017
, “
Low Frequency Distortion in Civil Aero-Engine Intake
,”
ASME J. Eng. Gas. Turbines Power
,
139
(
4
), p.
041203
.
14.
Carnevale
,
M.
,
Wang
,
F.
,
Green
,
J.
, and
Di Mare
,
L.
,
2015
, “
Lip Stall Suppression in Powered Intakes
,”
J. Propul. Power
,
32
(
1
), pp.
161
170
.
15.
Fidalgo
,
V. J.
,
Hall
,
C.
, and
Colin
,
Y.
,
2012
, “
A Study of Fan-distortion Interaction Within the Nasa Rotor 67 Transonic Stage
,”
ASME J. Turbomach.
,
134
(
5
), p.
051011
.
16.
Gunn
,
E. J.
,
Tooze
,
S. E.
,
Hall
,
C. A.
, and
Colin
,
Y.
,
2013
, “
An Experimental Study of Loss Sources in a Fan Operating With Continuous Inlet Stagnation Pressure Distortion
,”
ASME J. Turbomach.
,
135
(
5
), p.
051002
.
17.
Ochs
,
S. S.
,
Tillman
,
G.
,
Joo
,
J.
, and
Voytovych
,
D. M.
,
2016
, “
Computational Fluid Dynamics-based Analysis of Boundary Layer Ingesting Propulsion
,”
J. Propul. Power
,
33
(
2
), pp.
522
530
.
18.
Cousins
,
W. T.
,
Voytovych
,
D.
,
Tillman
,
G.
, and
Gray
,
E.
,
2017
, “
Design of a Distortion-Tolerant Fan for a Boundary-Layer Ingesting Embedded Engine Application
,”
53rd AIAA/SAE/ASEE Joint Propulsion Conference
,
Jul. 10–12
,
Atlanta, GA
, p.
5042
.
19.
Frohnapfel
,
D. J.
,
Ferrar
,
A. M.
,
Bailey
,
J.
,
O’Brien
,
W. F.
, and
Lowe
,
K. T.
,
2016
, “
Measurements of Fan Response to Inlet Total Pressure and Swirl Distortions Produced by Boundary Layer Ingesting Aircraft Configurations
,”
54th AIAA Aerospace Sciences Meeting
,
Jan. 4–8
,
San Diego, CA
, p.
0533
.
20.
Cousins
,
W. T.
, and
Davis
,
M. W.
,
2011
, “
Evaluating Complex Inlet Distortion With a Parallel Compressor Model: Part 1–Concepts, Theory, Extensions, and Limitations
,”
Proceedings of ASME Turbo Expo
,
June 6–10
,
Vancouver, Canada
, pp.
1
12
.
21.
Ma
,
Y.
,
Cui
,
J.
,
Vadlamani
,
N. R.
, and
Tucker
,
P.
,
2018
, “
Effect of Fan on Inlet Distortion: Mixed-Fidelity Approach
,”
AIAA J.
,
56
(
6
), pp.
2350
2360
.
22.
Ma
,
Y.
,
Vadlamani
,
N. R.
,
Cui
,
J.
, and
Tucker
,
P.
,
2019
, “
Comparative Studies of Rans Versus Large Eddy Simulation for Fan–Intake Interaction
,”
J. Fluids Eng.
,
141
(
3
), p.
031106
.
23.
Watson
,
R.
,
Cui
,
J.
,
Ma
,
Y.
,
Tyacke
,
J.
,
Vadlamani
,
N. R.
,
Alam
,
M. F.
,
Dai
,
Y.
,
Tucker
,
P. G.
,
Cao
,
T.
, and
Hield
,
P.
,
2017
, “
Improved Hierarchical Modelling for Aerodynamically Coupled Systems
,”
Proceedings of ASME Turbo Expo 2017
,
June 26–30
,
Charlotte, NC
, p.
V02BT41A056
.
24.
Lapworth
,
L.
,
2004
, “
Hydra-CFD: A Framework for Collaborative CFD Development
,”
International Conference on Scientific and Engineering Computation (IC-SEC)
,
Singapore
,
July 5–8
, Vol.
30
.
25.
Watson
,
R.
,
2013
, “
Large Eddy Simulation of Cutback Trailing Edges for Film Cooling Turbine Blades
,” Ph.D. thesis,
University of Cambridge
,
Cambridge, UK
.
26.
Carnevale
,
M.
,
Wang
,
F.
,
Parry
,
A. B.
,
Green
,
J. S.
, and
di Mare
,
L.
,
2017
, “
Fan Similarity Model for the Fan-Intake Interaction Problem
,”
Proceedings of ASME Turbo Expo
,
June 26–30
,
Charlotte, NC
, p.
V001T01A019
.
27.
Campbell
,
A. F.
,
1981
, “
An Investigation of Distortion Indices for Prediction of Stalling Behavior in Aircraft Gas Turbine Engines
,” Ph.D. thesis,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.
28.
Boldman
,
D. R.
,
Iek
,
C.
,
Hwang
,
D.
,
Larkin
,
M.
, and
Schweiger
,
P.
,
1993
, “
Effect of a Rotating Propeller on the Separation Angle of Attack and Distortion in Ducted Propeller Inlets
,” NASA Technical Memorandum 105935.
29.
Lee
,
B.
,
2001
, “
Self-Sustained Shock Oscillations on Airfoils At Transonic Speeds
,”
Prog. Aerosp. Sci.
,
37
(
2
), pp.
147
196
.
30.
Giannelis
,
N. F.
,
Vio
,
G. A.
, and
Levinski
,
O.
,
2017
, “
A Review of Recent Developments in the Understanding of Transonic Shock Buffet
,”
Prog. Aerosp. Sci.
,
92
(
1
), pp.
39
84
.
31.
Jakubowski
,
A.
, and
Luidens
,
R.
,
1975
, “
Internal Cowl-Separation at High Incidence Angles
,”
13th Aerospace Sciences Meeting
,
Jan. 20–22
,
Pasadena, CA
, p.
64
.
32.
Chou
,
D.
,
Luidens
,
R.
, and
Stockman
,
N.
,
1978
, “
Prediction of Boundary-Layer Flow Separation in V/stol Engine Inlets
,”
J. Aircraft
,
15
(
8
), pp.
474
481
.
33.
Adamczyk
,
J. J.
,
1985
, “
Model Equation for Simulating Flows in Multistage Turbomachinery
,”
30th International Gas Turbine Conference and Exhibit
,
Houston, TX
,
Mar. 17–21
, p.
85
–GT–
226
.
34.
Gunn
,
E.
, and
Hall
,
C.
,
2014
, “
Aerodynamics of Boundary Layer Ingesting Fans
,”
Proceedings of ASME Turbo Expo
,
June 16–20
,
Dusseldorf, Germany
, p.
V01AT01A024
.
35.
Cousins
,
W. T.
,
1997
, “
The Dynamics of Stall and Surge Behavior in Axial-Centrifugal Compressors
,” Ph.D. thesis,
Virginia Tech
,
Blacksburg, VA
.
36.
Peters
,
A.
,
2014
, “
Ultra-Short Nacelles for Low Fan Pressure Ratio Propulsors
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
You do not currently have access to this content.