Recent advances in gas turbine film cooling technology such as round film cooling holes embedded in craters or trenches, and shaped film cooling holes are of interest due to a marked improvement in the effectiveness of film cooling jets. Typically, shaped film cooling holes have higher manufacturing cost, while film cooling holes embedded in craters/trenches etched in thermal barrier coatings (TBC) are seen as a cost-effective alternative. In a recent numerical study Kalghatgi and Acharya (2015, “Improved Film Cooling Effectiveness With a Round Film Cooling Hole Embedded in Contoured Crater,” ASME J. Turbomach., 137(10), p. 101006) reported a novel crater shape to generate anti-counter rotating vortex pair (CRVP) beneath the film cooling jet and showed a significant improvement in film cooling performance. In the present paper, a comprehensive study of flow dynamics is presented to gain insight into the unsteady flow physics of film cooling jet issued from a round hole embedded in the contoured crater. As a baseline case, a round film cooling hole with a 35 deg inclined short delivery tube (l/D = 1.75) is used as from a previous study with freestream Reynolds number based on jet diameter set to ReD = 16,000 and density ratio of coolant to freestream fluid of ρjo = 2.0. These flow conditions are used for the cases of film cooling jet embedded in contoured crater. The results are presented for two crater depths: (i) shallow crater with 0.2D depth and (ii) deep crater with 0.75D depth. First- and second-order flow statistics are presented for all the cases, including the experimental data for baseline case from the literature. Time-averaged and instantaneous flow structures are visualized to reveal the mechanisms of anti-CRVP and attenuating CRVP. The dynamics of flow structures studied using single-point spectral analysis in the shear layer and modal analysis of three-dimensional flow field shows a loss of coherency and increased time scales of shear layer structures as the crater depth is increased, primarily due to attenuating of CRVP in the downstream vicinity of the crater. The modal analysis confirmed reduced magnitude of temperature fluctuations (hot spots) on the cooling wall compared with baseline round film cooling hole. Finally, a 2–5% additional pressure loss due to the crater is reported over the existing ≈7% loss in pressure for baseline case.

References

References
1.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Adv. Heat Transf.
,
7
, pp.
321
379
.
2.
Margason
,
R. J.
1993
, “
Fifty Years of Jet in Crossflow Research
,”
Proceedings of the AGARD Symposium on Computational and Experimental Assessment of Jets in Crossflow
,
Winchester, UK
, AGARD-CP-534.
3.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.
4.
Kelso
,
R. M.
,
Lim
,
T. T.
, and
Perry
,
A. E.
,
1996
, “
An Experimental Study of Round Jets in Cross-Flow
,”
J. Fluid Mech.
,
306
, pp.
111
144
.
5.
Lim
,
T.
,
New
,
H. T.
, and
Luo
,
S. C.
,
2001
, “
On the Development of Large-Scale Structures of Jet Normal to Cross Flow
,”
Phys. Fluids
,
13
(
3
), pp.
770
775
.
6.
Smith
,
S.
, and
Mungal
,
M.
,
1998
, “
Mixing, Structures and Scaling of the Jet in Crossflow
,”
J. Fluid Mech.
,
357
, pp.
83
122
.
7.
Sykes
,
R. I.
,
Lewellen
,
W. S.
, and
Parker
,
S. F.
,
1986
, “
On the Vorticity Dynamics of a Turbulent Jet in a Crossflow
,”
J. Fluid Mech.
,
168
, pp.
393
413
.
8.
Haven
,
K.
, and
Kurosaka
,
M.
,
1997
, “
Kidney and Anti-Kidney Vortices in Crossflow Jets
,”
J. Fluid Mech.
,
352
, pp.
27
64
.
9.
Andreopoulos
,
J.
, and
Rodi
,
W.
,
1984
, “
Experimental Investigation of Jets in Cross-Flow
,”
J. Fluid Mech.
,
138
, pp.
93
127
.
10.
Kalghatgi
,
P.
, and
Acharya
,
S.
,
2014
, “
Modal Analysis of Inclined Film Cooling Jet Flow
,”
ASME J. Turbomach.
,
136
, p.
061007
.
11.
Goldstein
,
R. J.
,
Eckert
,
E.
, and
Burgraf
,
E.
,
1974
, “
Effects of Hole Geometry and Density on Three Dimensional Film Cooling
,”
Int. J. Heat Mass Transf.
,
17
, pp.
595
605
.
12.
Haven
,
B. A.
,
Yamagata
,
D. K.
,
Kurosaka
,
M.
,
Yamawaki
,
S.
, and
Maya
,
T.
,
1997
, “
Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness
,”
IGTI Turbo Expo
,
Orlando
, pp.
441
453
, Paper GT-1997-45.
13.
Thole
,
K.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Witting
,
S.
,
1998
, “
Flow Field Measurements for Film Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
, pp.
327
336
.
14.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
, pp.
549
556
.
15.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1997
, “
Discharge Coefficient Measurements of Film Cooling Holes With Expanded Exits
,” ASME Paper 97-GT-165.
16.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
2002
, “
A Converging Slot-Hole Film-Cooling Geometry Part 1: Low-Speed Flat-Plate Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
, pp.
453
460
.
17.
Liu
,
J.
,
Malak
,
M.
,
Tapia
,
L.
,
Crites
,
D. C.
,
Ramachandran
,
D.
,
Srinivasan
,
B.
, and
Venkataraman
,
J.
,
2010
, “
Enhanced Film Cooling Effectiveness With New Shaped Holes
,”
IGTI Turbo Expo
,
Glasgow
, Paper GT-2010-22774.
18.
Yusop
,
N.
,
Ali
,
A.
, and
Abdullah
,
M.
,
2013
, “
Computational Study of a New Scheme for a Film-Cooling Hole on Convex Surface of Turbine Blades
,”
Int. Commun. Heat Mass Transf.
,
43
, pp.
90
99
.
19.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
J. Turbomach.
,
118
, pp.
807
813
.
20.
Graf
,
L.
, and
Kleiser
,
L.
,
2011
, “
Large-Eddy Simulation of Double-Row Compound Angle Film Cooling: Setup and Validation
,”
Comput. Fluids
,
43
, pp.
58
67
.
21.
Kusterer
,
K.
,
Elyas
,
A.
,
Hohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2011
, “
The Nekomimi Cooling Technology: Cooling Holes With Ears for High-Efficient Film Cooling
,”
Proceedings of ASME Turbo Expo 2011-GT2011
,
Vancouver, British Columbia, Canada
.
22.
Kusterer
,
K.
,
Tekin
,
N.
,
Wullner
,
T.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2014
, “
Nekomimi Film Cooling Holes Configuration Under Conjugate Heat Transfer Conditions
,”
Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Dusseldorf, Germany
, GT2014-25845.
23.
Han
,
C.
,
Ren
,
J.
, and
Jiang
,
H.
,
2014
, “
Experimental Investigation of SYCEE Film Cooling Performance on a Plate and a Tested Vane of an F-Class Gas Turbine
,”
Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Dusseldorf, Germany
, GT2014-25774.
24.
Nasir
,
H.
,
Acharya
,
S.
, and
Ekkad
,
S.
,
2003
, “
Improved Film Cooling From Cylindrical Angled Holes With Triangular Tabs: Effect of Tab Orientations
,”
Int. J. Heat Fluid Flow
,
24
(
5
), pp.
657
668
.
25.
Yang
,
C.-F.
, and
Zhang
,
J.-Z.
,
2012
, “
Experimental Investigation on Film Cooling Characteristics From a Row of Holes With Ridge- Shaped Tabs
,”
Exp. Therm. Fluid Sci.
,
37
, pp.
113
120
.
26.
Fric
,
T.
, and
Campbell
,
R.
,
2002
, “
Method for Improving the Cooling Effectiveness of a Gaseous Coolant Stream Which Flows Through a Substrate, and Related Articles of Manufacture
,” U.S. Patent No. 6,383,602.
27.
Bunker
,
R.
,
2002
, “
Film Cooling Effectiveness Due to Discrete Holes Within a Transverse Surface Slot
,”
IGTI Turbo Expo
,
Amsterdam, Netherlands
, Paper No. GT-2002-30178.
28.
Dorrington
,
J. R.
,
Bogard
,
D.
, and
Bunker
,
R.
,
2007
, “
Film Effectiveness Performance for Coolant Holes Embedded in Various Shallow Trench and Crater Depressions
,”
IGTI Turbo Expo
,
Montreal, Canada
, pp.
749
758
, Paper No. GT-2007.
29.
Lu
,
Y.
,
2007
, “
Effect of Hole Configurations on Film Cooling on Cylindrical Inclined Holes for the Application to Gas Turbine Blades
,” Ph.D. thesis,
Louisiana State University
.
30.
Waye
,
S.
, and
Bogard
,
D.
,
2007
, “
High Resolution Film Cooling Effectiveness Measurements of Axial Holes Embedded in Transverse Trench With Various Trench Configurations
,”
ASME J. Turbomach.
,
129
, pp.
294
302
.
31.
Kalghatgi
,
P.
, and
Acharya
,
S.
,
2015
, “
Improved Film Cooling Effectiveness With a Round Film Cooling Hole Embedded in Contoured Crater
,”
ASME J. Turbomach.
,
137
(
10
), p.
101006
.
32.
Sinha
,
A. K.
,
Bogard
,
D.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
J. Turbomach.
,
113
, pp.
442
449
.
33.
Bogard
,
D.
,
2008
, private communication,
Dec
.
15
.
34.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.
35.
Schmidt
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.
36.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
,
Chiang
,
H. D.
, and
Elovic
,
E.
,
1985
, “
Effect of Surface Roughness on Film Cooling Performance
,”
ASME J. Eng. Gas Turbine Power
,
107
, pp.
111
116
.
You do not currently have access to this content.