The present work combines experimental measurements and unsteady, three-dimensional computational fluid dynamics predictions to gain further insight into the complex flow-field within an automotive turbocharger centrifugal compressor. Flow separation from the suction surface of the main impeller blades first occurs in the mid-flow range, resulting in local flow reversal near the periphery, with the severity increasing with decreasing flow rate. This flow reversal improves leading-edge incidence over the remainder of the annulus, due to (a) reduction of cross-sectional area of forward flow, which increases the axial velocity, and (b) prewhirl in the direction of impeller rotation, as a portion of the tangential velocity of the reversed flow is maintained when it mixes with the core flow and transitions to the forward direction. As the compressor operating point enters the region where the slope of the constant speed compressor characteristic (pressure ratio versus mass flow rate) becomes positive, rotating stall cells appear near the shroud side diffuser wall. The angular propagation speed of the diffuser rotating stall cells is approximately 20% of the shaft speed, generating pressure fluctuations near 20% and 50% of the shaft frequency, which were also experimentally observed. For the present compressor and rotational speed, flow losses associated with diffuser rotating stall are likely the key contributor to increasing the slope of the constant speed compressor performance curve to a positive value, promoting the conditions required for surge instabilities. The present mild surge predictions agree well with the measurements, reproducing the amplitude and period of compressor outlet pressure fluctuations.

References

References
1.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors, Part I: Theoretical Compression System Model
,”
ASME J. Eng. Power
,
98
, pp.
190
197
.
2.
Cumpsty
,
N. A.
,
1989
,
Compressor Aerodynamics
,
Krieger
,
Melbourne, FL
.
3.
Baines
,
N.C
,
2005
,
Fundamentals of Turbocharging
,
Concepts NREC
,
White River Junction, VT
.
4.
Dehner
,
R.
,
Figurella
,
N.
,
Selamet
,
A.
,
Keller
,
P.
,
Becker
,
M.
,
Tallio
,
K.
,
Miazgowicz
,
K.
, and
Wade
,
R.
,
2013
, “
Instabilities at the Low-Flow Range of a Turbocharger Compressor
,”
SAE Int. J. Engines
,
6
(
2
), pp.
1356
1367
.
5.
Torregrosa
,
A. J.
,
Broatch
,
A.
,
Margot
,
X.
,
Garcia-Tiscar
,
J.
,
Narvekar
,
Y.
, and
Cheung
,
R.
,
2017
, “
Local Flow Measurements in a Turbocharger Compressor Inlet
,”
J. Exp. Therm. Fluid Sci.
,
88
, pp.
542
553
.
6.
Andersen
,
J.
,
Lindstrom
,
F.
, and
Westin
,
F.
,
2008
, “
Surge Definitions for Radial Compressors in Automotive Turbochargers
,”
SAE Int. J. Engines
,
1
(
1
), pp.
218
231
.
7.
Emmons
,
H.
,
Pearson
,
C.
, and
Grant
,
H.
,
1955
, “
Compressor Surge and Stall Propagation
,”
Trans. ASME
,
77
, pp.
455
469
.
8.
Fink
,
D. A.
,
1988
, “
Surge Dynamics and Unsteady Flow Phenomena in Centrifugal Compressors
,” Ph.D. thesis,
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology
,
Cambridge
.
9.
Fink
,
D. A.
,
Cumpsty
,
N. A.
, and
Greitzer
,
E. M.
,
1992
, “
Surge Dynamics in a Free-Spool Centrifugal Compressor System
,”
ASME J. Turbomach.
114
, pp.
321
332
.
10.
Yano
,
T.
, and
Nagata
,
B.
,
1971
, “
A Study on Surging Phenomena in Diesel Engine Air-Charging System
,”
Jpn. Soc. Mech. Eng.
,
14
, pp.
364
376
.
11.
Frigne
,
P.
, and
Van Den Braembussche
,
R.
,
1984
, “
Distinction Between Different Types of Impeller and Diffuser Rotating Stall in a Centrifugal Compressor with Vaneless Diffuser
,”
ASME J. Eng. Gas Turbines Power
,
106
, pp.
468
474
.
12.
Oakes
,
W.
,
Lawless
,
P.
,
Fagan
,
J.
, and
Fleeter
,
S.
,
2002
, “
High-Speed Centrifugal Compressor Surge Initiation Characterization
,”
AIAA J. Propulsion Power
,
18
(
5
), pp.
1012
1018
.
13.
Rose
,
M.
,
Irmler
,
K.
,
Schleer
,
M.
,
Stahlecker
,
D.
, and
Abhart
,
R.
,
2003
, “
Classic Surge in a Centrifugal Compressor
,” ASME Paper No. GT2003-38476.
14.
Mizuki
,
S.
, and
Oosawa
,
Y.
,
1992
, “
Unsteady Flow Within Centrifugal Compressor Channels Under Rotating Stall and Surge
,”
ASME J. Turbomach.
,
114
, pp.
312
320
.
15.
Margot
,
X.
,
Gil
,
A.
,
Tiseira
,
A.
, and
Lang
,
R.
,
2008
, “
Combination of CFD and Experimental Techniques to Investigate the Flow in Centrifugal Compressors Near the Surge Line
,” SAE Paper No. 2008-01-0300.
16.
Broatch
,
A.
,
Galindo
,
J.
,
Navarro
,
R.
, and
García-Tíscar
,
J.
,
2015
, “
Simulations and Measurements of Automotive Turbocharger Compressor Whoosh Noise
,”
Eng. Appl. Comput. Fluid Mech.
,
9
(
1
), pp.
12
20
.
17.
Broatch
,
A.
,
Galindo
,
J.
,
Navarro
,
R.
, and
García-Tíscar
,
J.
,
2016
, “
Numerical and Experimental Analysis of Automotive Turbocharger Compressor Aeroacoustics at Different Operating Conditions
,”
Int. J. Heat Fluid Flow
,
61
(
B
), pp.
245
255
.
18.
Zhang
,
W.
,
Lynch
,
M.
, and
Reynold
,
R.
,
2015
, “
A Practical Simulation Procedure using CFD to Predict Flow Induced Sound of a Turbocharger Compressor
,”
SAE Int. J. Passeng. Cars Mech. Syst.
,
8
(
2
), pp.
521
525
.
19.
Karim
,
A.
,
Miazgowicz
,
K.
, and
Lizotte
,
B.
(
2015
). “
Automotive Turbocharger Compressor Onset of Surge Prediction using Computational Fluid Dynamics
,” SAE Paper No. 2015-01-1280.
20.
Sundström
,
E.
,
Semlitsch
,
B.
, and
Mihaescu
,
M.
,
2015
, “
Centrifugal Compressor: The Sound of Surge
,”
21st AIAA/CEAS Aeroacoustics Conference
,
Dallas, TX
, Paper No. AIAA 2015-2674.
21.
Guillou
,
E.
,
Gancedo
,
M.
,
Gutmark
,
E.
, and
Mohamed
,
A.
,
2012
, “
PIV Investigation of the Flow Induced by a Passive Surge Control Method in a Radial Compressor
,”
Exp. Fluids
,
53
, pp.
619
635
.
22.
Uhlenhake
,
G.
,
Selamet
,
A.
,
Fogarty
,
K.
,
Tallio
,
K.
, and
Keller
,
P.
,
2011
, “
Development of an Experimental Facility to Characterize Performance, Surge, and Acoustics in Turbochargers
,” SAE Paper No. 2011-01-1644.
23.
Dehner
,
R.
,
Selamet
,
A.
,
Keller
,
P.
, and
Becker
,
M.
,
2010
, “
Simulation of Mild Surge in a Turbocharger Compression System
,”
SAE Int. J. Engines
,
3
, pp.
197
212
.
24.
Dehner
,
R.
,
Selamet
,
A.
,
Keller
,
P.
, and
Becker
,
M.
,
2011
, “
Prediction of Surge in a Turbocharger Compression System vs. Measurements
,”
SAE Int. J. Engines
,
4
(
2
), pp.
2181
2192
.
25.
Dehner
,
R.
,
2011
, “
Simulation of Surge in Turbocharger Compression Systems
,” M.S. thesis,
Department of Mechanical Engineering, The Ohio State University
,
Columbus, OH
.
26.
Figurella
,
N.
,
Dehner
,
R.
,
Selamet
,
A.
,
Tallio
,
K.
,
Miazgowicz
,
K.
, and
Wade
,
R.
,
2014
, “
Noise at the Mid to High Flow Range of a Turbocharger Compressor
,”
Noise Control Eng. J.
,
62
(
5
), pp.
306
312
.
27.
Dehner
,
R.
,
2016
, “
An Experimental and Computational Study of Surge in Turbocharger Compression Systems
,” Ph.D. Dissertation,
Department of Mechanical and Aerospace Engineering, The Ohio State University
,
Columbus, OH
.
28.
Japikse
,
D.
,
1996
,
Centrifugal Compressor Design and Performance
,
Concepts ETI
,
White River Junction, VT
.
29.
Ohio Supercomputer Center
,
2012
, Oakley Supercomputer, Columbus, OH.
30.
STAR-CCM+ (Version 10.04), 2015, CD-adapco, Melville, NY.
31.
Kämmer
,
N.
, and
Rautenberg
,
M
.,
1982
, “
An Experimental Investigation of Rotating Stall Flow in a Centrifugal Compressor
,” ASME Paper No. 82-GT-82.
You do not currently have access to this content.