Shock control bumps can help to delay and weaken shocks, reducing loss generation and shock-induced separation and delaying stall inception for transonic turbomachinery components. The use of shock control bumps on turbomachinery blades is investigated here for the first time using 3D analysis. The aerodynamic optimization of a modern research fan blade and a highly loaded compressor blade is carried out using shock control bumps to improve their performance. Both the efficiency and stall margin of transonic fan and compressor blades may be increased through the addition of shock control bumps to the geometry. It is shown how shock-induced separation can be delayed and reduced for both cases. A significant efficiency improvement is shown for the compressor blade across its characteristic, and the stall margin of the fan blade is increased by designing bumps that reduce shock-induced separation near to stall. Adjoint surface sensitivities are used to highlight the critical regions of the blade geometries, and it is shown how adding bumps in these regions improves blade performance. Finally, the performance of the optimized geometries at conditions away from where they are designed is analyzed in detail.

References

References
1.
Ginder
,
R.
, and
Calvert
,
W.
,
1987
, “
The Design of an Advanced Civil Fan Rotor
,”
ASME J. Turbomach.
,
109
(
3
), pp.
340
345
.
2.
Cumpsty
,
N. A.
,
1989
,
Compressor Aerodynamics
,
Longman Scientific & Technical
,
New York
.
3.
Prince
,
D. C.
,
1980
, “
Three-Dimensional Shock Structures for Transonic/Supersonic Compressor Rotors
,”
J. Aircraft
,
17
(
1
), pp.
28
37
.
4.
John
,
A.
,
Shahpar
,
S.
, and
Qin
,
N.
,
2017
, “
Novel Compressor Blade Shaping Through a Free-Form Method
,”
ASME J. Turbomach.
,
139
(
8
),
081002
.
5.
Tai
,
T. C.
,
1977
, “
Theoretical Aspects of Dromedaryfoil
,”
Technical Report, DTIC Document
.
6.
Ashill
,
P. R.
,
Fulker
,
J. L.
, and
Shires
,
J. L.
,
1992
, “
A Novel Technique for Controlling Shock Strength of Laminar-Flow Aerofoil Sections
,”
DGLR BERICHT
, pp.
175
183
.
7.
Drela
,
M.
, and
Giles
,
M. B.
,
1987
, “
Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils
,”
AIAA J.
,
25
(
10
), pp.
1347
1355
.
8.
Sommerer
,
A.
,
Lutz
,
T.
, and
Wagner
,
S.
,
2000
, “
Design of Adaptive Transonic Airfoils by Means of Numerical Optimisation
,”
Proceedings of ECCOMAS
,
Barcelona
.
9.
Colliss
,
S. P.
,
Babinsky
,
H.
,
Nubler
,
K.
, and
Lutz
,
T.
,
2016
, “
Vortical Structures on Three-Dimensional Shock Control Bumps
,”
AIAA J.
,
54
, pp.
2338
2350
.
10.
Stanewsky
,
E.
,
2002
,
Drag Reduction by Shock and Boundary Layer Control: Results of the Project EUROSHOCK II. Supported by the European Union 1996–1999
, Vol.
80
,
Springer Science & Business Media
,
New York
.
11.
Qin
,
N.
,
Wong
,
W.
, and
Le Moigne
,
A.
,
2008
, “
Three dimensional Contour Bumps for Transonic Wing Drag Reduction
,”
Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng.
,
222
(
5
), pp.
619
629
.
12.
Mazaheri
,
K.
, and
Khatibirad
,
S.
,
2017
, “
Using a Shock Control Bump to Improve the Performance of an Axial Compressor Blade Section
,”
Shock Waves
,
27
(
2
), pp.
299
312
.
13.
Hicks
,
R. M.
, and
Henne
,
P. A.
,
1978
, “
Wing Design by Numerical Optimization
,”
J. Aircraft
,
15
(
7
), pp.
407
412
.
14.
Suder
,
K.
, and
Celestina
,
M.
,
1996
, “
Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor
,”
ASME J. Turbomach.
,
118
(
2
), pp.
218
229
.
15.
Reid
,
L.
, and
Moore
,
R. D.
,
1978
, “
Performance of Single Stage Axial-Flow Transonic Compressor With Rotor and Stator Aspect Ratios of 1.19 and 1.26, Respectively, and With Design Pressure Ratio of 1.82
,” NASA-TP-1659.
16.
Hah
,
C.
,
2009
, “
Large Eddy Simulation of Transonic Flow Field in NASA Rotor 37
,”
47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
, p.
1061
.
17.
Dunham
,
J.
,
1998
, “
CFD Validation for Propulsion System Components [la validation CFD des organes des propulseurs]
,”
Technical Report, DTIC Document
.
18.
Chima
,
R.
,
2009
, “
Swift Code Assessment for Two Similar Transonic Compressors
,”
47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
, p.
1058
.
19.
Denton
,
J.
,
1997
, “
Lessons From Rotor 37
,”
J. Therm. Sci.
,
6
(
1
), pp.
1
13
.
20.
Cumpsty
,
N.
,
2010
, “
Some Lessons Learned
,”
ASME J. Turbomach.
,
132
(
4
),
041018
.
21.
Seshadri
,
P.
,
Parks
,
G. T.
, and
Shahpar
,
S.
,
2014
, “
Leakage Uncertainties in Compressors: The Case of Rotor 37
,”
J. Propul. Power
,
31
(
1
), pp.
456
466
.
22.
Lapworth
,
L.
,
2004
, “
Hydra-CFD: A Framework for Collaborative CFD Development
,”
International Conference on Scientific and Engineering Computation (IC-SEC)
,
Singapore
,
June
, Vol.
30
.
23.
Shahpar
,
S.
, and
Lapworth
,
L.
,
2003
, “
PADRAM: Parametric Design and Rapid Meshing System for Turbomachinery Optimisation
,”
ASME Turbo Expo 2003, Collocated With the 2003 International Joint Power Generation Conference
,
American Society of Mechanical Engineers
, pp.
579
590
.
24.
Shabbir
,
A.
,
Celestina
,
M.
,
Adamczyk
,
J.
, and
Strazisar
,
A.
,
1997
, “
The Effect of Hub Leakage Flow on Two High Speed Axial Flow Compressor Rotors
,”
ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
,
American Society of Mechanical Engineers
.
25.
John
,
A.
,
Qin
,
N.
, and
Shahpar
,
S.
,
2018
, “
The Impact of Realistic Casing Geometries and Clearances on Fan Blade Tip Aerodynamics (gt2017-64403)
,”
ASME J. Turbomach.
,
140
,
061002
.
26.
Duta
,
M. C.
,
Shahpar
,
S.
, and
Giles
,
M. B.
,
2007
, “
Turbomachinery Design Optimization Using Automatic Differentiated Adjoint Code
,”
ASME Turbo Expo 2007: Power for Land, Sea, and Air
,
American Society of Mechanical Engineers
, pp.
1435
1444
.
27.
Kulfan
,
B. M.
, and
Bussoletti
,
J. E.
,
2006
, “
Fundamental Parametric Geometry Representations for Aircraft Component Shapes
,”
11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, Vol.
1
, sn, pp.
547
591
.
28.
Toropov
,
V.
,
van Keulen
,
F.
,
Markine
,
V.
, and
de Boer
,
H.
,
1996
, “
Refinements in the Multi-Point Approximation Method to Reduce the Effects of Noisy Structural Responses
,”
6th Symposium on Multidisciplinary Analysis and Optimization
, p.
4087
.
29.
Polynkin
,
A.
,
Toropov
,
V.
, and
Shahpar
,
S.
,
2008
, “
Adaptive and Parallel Capabilities in the Multipoint Approximation Method
,”
12th AIAA-ISSMO MDO Conference
,
Victoria, British Columbia, Canada
,
September
, pp.
10
12
.
You do not currently have access to this content.