Magnetic resonance thermometry (MRT) is a maturing diagnostic tool used to measure three-dimensional temperature fields. It has a great potential for investigating fluid flows within complex geometries leveraging medical grade magnetic resonance imaging (MRI) equipment and software along with novel measurement techniques. The efficacy of the method in engineering applications increases when coupled with other well-established MRI-based techniques such as magnetic resonance velocimetry (MRV). In this study, a challenging geometry is presented with the direct application to a complex gas turbine blade cooling scheme. Turbulent external flow with a Reynolds number of 136,000 passes a hollowed NACA-0012 airfoil with internal cooling features. Inserts within the airfoil, fed by a second flow line with an average temperature difference of 30 K from the main flow and a temperature-dependent Reynolds number in excess of 1,800, produces a conjugate heat transfer scenario including impingement cooling on the inside surface of the airfoil. The airfoil cooling scheme also includes zonal recirculation, surface film cooling, and trailing edge ejection features. The entire airfoil surface is constructed of a stereolithography resin—Accura 60—with low thermal conductivity. The three-dimensional internal and external velocity field is measured using an MRV. The fluid temperature field is measured within and outside of the airfoil with an MRT, and the results are compared with a computational fluid dynamics (CFD) solution to assess the current state of the art for combined MRV/MRT techniques for investigating these complex internal and external flows. The accompanying CFD analysis provides a prediction of the velocity and temperature fields, allowing for errors in the MRT technique to be estimated.

References

References
1.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
2.
Taslim
,
M.
,
Spring
,
S.
, and
Mehlman
,
B.
,
1992
, “
Experimental Investigation of Film Cooling Effectiveness for Slots of Various Exit Geometries
,”
J. Thermophys. Heat Transf.
,
6
(
2
), pp.
302
307
.
3.
Pai
,
B. R.
, and
Whitelaw
,
J. H.
,
1971
, “
The Prediction of Wall Temperature in the Presence of Film Cooling
,”
Int. J. Heat. Mass. Transf.
,
14
(
3
), pp.
409
426
.
4.
Nicholas
,
M.
,
Sin Chien Siw
,
M. K. C.
, and
Alvin
,
M. A.
,
2013
, “
Effects of Jet Diameter and Surface Roughness on Internal Cooling With Single Array of Jets
,”
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
,
San Antonio, TX
,
June 3–7
, p.
V03AT12A038
.
5.
Martini
,
P.
,
Schulz
,
A.
, and
Bauer
,
H. J.
,
2005
, “
Film Cooling Effectiveness and Heat Transfer on the Trailing Edge Cutback of Gas Turbine Airfoils With Various Internal Cooling Designs
,”
ASME J. Turbomach.
,
128
(
1
), pp.
196
205
.
6.
Lau
,
S. C.
,
Cervantes
,
J.
,
Han
,
J. C.
, and
Rudolph
,
R. J.
,
2008
, “
Internal Cooling Near Trailing Edge of a Gas Turbine Airfoil with Cooling Airflow Through Blockages With Holes
,”
ASME J. Turbomach.
,
130
(
3
), p.
031004
.
7.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat. Mass. Transf.
,
17
(
5
), pp.
595
607
.
8.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Adv. Heat transf.
,
7
, pp.
321
379
.
9.
Glynn
,
C.
,
O’Donovan
,
T.
,
Murray
,
D.
, and
Feidt
,
M.
,
2005
, “
Jet Impingement Cooling
,”
Proceedings of the 9th UK National Heat Transfer Conference
,
Manchester, England
,
Sept.
, pp.
5
6
.
10.
Dannhauer
,
A.
,
2009
, “
Investigation of Trailing Edge Cooling Concepts in a High Pressure Turbine Cascade: Analysis of the Adiabatic Film Cooling Effectiveness
,”
ASME Turbo Expo 2009: Power for Land, Sea, and Air
,
Orlando, FL
,
June 8–12
, pp.
301
310
.
11.
Cunha
,
F.
, and
Chyu
,
M. K.
,
2006
, “
Trailing-edge Cooling for Gas Turbines
,”
J. Propulsion Power
,
22
(
2
), pp.
286
300
.
12.
Burns
,
W.
, and
Stollery
,
J.
,
1969
, “
The Influence of Foreign Gas Injection and Slot Geometry on Film Cooling Effectiveness
,”
Int. J. Heat. Mass. Transf.
,
12
(
8
), pp.
935
951
.
13.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat. Transfer.
,
127
(
4
), pp.
441
453
.
14.
Pula
,
J.
,
2016
, “
Heat Transfer in the H.I.T Research Turbine
,”
Turbine Energy Technology Symposium
,
Dayton, OH
.
15.
Williams
,
E. T.
,
Caniano
,
D. C.
,
Davis
,
G. M.
,
Ferrell
,
A. M.
,
Van Poppel
,
B. P.
,
Benson
,
M. J.
, and
Elkins
,
C. J.
,
2017
, “
Three Dimensional Measurements of a Turbine Blade Using Magnetic Resonance Thermometry and Magnetic Resonance Velocimetry
,”
ASME 2017 International Mechanical Engineering Congress and Exposition
,
Tampa, FL
,
Nov. 3–9
, p.
V008T10A037
.
16.
Wasserman
,
F.
,
Buchenberg
,
W. B.
,
Simpson
,
R.
,
Jung
,
B.
, and
Grundmann
,
S.
,
2014
, “
Applying Magnetic Resonance Thermometry to Engineering Flows
,”
17th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
,
July 7–10
, pp.
1
14
.
17.
Spirnak
,
J.
,
Samland
,
M.
,
Tremont
,
B.
,
Williams
,
E.
,
Van Poppel
,
B.
,
Benson
,
M.
,
Verhulst
,
C.
,
Elkins
,
C.
,
Eaton
,
J.
, and
Burton
,
L.
, “
Validation of Magnetic Resonance Thermometry Through Experimental and Computational Approaches
,”
52nd AIAA/SAE/ASEE Joint Propulsion Conference
,
Salt Lake City, UT
,
July 2016
, pp.
1
16
.
18.
Melton
,
L.
, and
Lipp
,
C.
,
2003
, “
Criteria for Quantitative Plif Experiments Using High-Power Lasers
,”
Exp. Fluids
,
35
(
4
), pp.
310
316
.
19.
Krueckels
,
J.
,
Gritsch
,
M.
, and
Schnieder
,
M.
,
2009
, “
Design Considerations and Validation of Trailing Edge Pressure Side Bleed Cooling
,”
ASME Turbo Expo 2009: Power for Land, Sea, and Air
,
Orlando, FL
,
June 8–12
, pp.
63
70
.
20.
Fujisawa
,
N.
,
Funatani
,
S.
, and
Katoh
,
N.
,
2004
, “
Scanning Liquid-Crystal Thermometry and Stereo Velocimetry for Simultaneous Three-Dimensional Measurement of Temperature and Velocity Field in a Turbulent Rayleigh-Bernard Convection
,”
Exp. Fluids
,
38
(
3
), pp.
291
303
.
21.
Donovan
,
F.
,
Morris
,
M.
,
Pal
,
A.
,
Benne
,
M.
, and
Crites
,
R.
, “
Data Analysis Techniques for Pressure- and Temperature-Sensitive Paint
,”
31st Aerospace Sciences Meeting
,
Reno, NV
,
Jan. 1993
, p.
93
0176
.
22.
Dabiri
,
D.
,
2009
, “
Digital Particle Image Thermometry/Velocitmetry: A Review
,”
Exp. Fluids
,
46
(
2
), pp.
191
241
.
23.
Coletti
,
F.
,
Benson
,
M. J.
,
Ling
,
J.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2013
, “
Turbulent Transport in an Inclined Jet In Crossflow
,”
Int. J. Heat Fluid Flow
,
43
, pp.
149
160
.
24.
Carlomagno
,
G. M.
, and
Cardone
,
G.
,
2010
, “
Infrared Thermography for Convective Heat Transfer Measurements
,”
Exp. Fluid
,
49
, pp.
1187
1218
.
25.
Buchenberg
,
W. B.
,
Florian
,
W.
,
Grundmann
,
S.
,
Jung
,
B.
, and
Simpson
,
R.
,
2015
, “
Acquisition of 3D Temperature Distributions in Fluid Flow Using Proton Resonance Frequency Thermometry
,”
Magn. Reson. Med.
,
6
(
1
), pp.
145
55
.
26.
Choi
,
J.-h.
,
Mhetras
,
S.
,
Han
,
J.-C.
,
Lau
,
S. C.
, and
Rudolph
,
R.
,
2008
, “
Film Cooling and Heat Transfer on Two Cutback Trailing Edge Models With Internal Perforated Blockages
,”
ASME J. Heat. Transfer.
,
130
(
1
), p.
012201
.
27.
Spalding
,
D. B.
,
1960
, “
A Standard Formulation of the Steady Convective Mass Transfer Problem
,”
Int. J. Heat. Mass. Transf.
,
1
(
2
), pp.
192
207
.
28.
Saha
,
A. K.
, and
Acharya
,
S.
,
2008
, “
Computations of Turbulent Flow and Heat Transfer Through A Three-Dimensional Nonaxisymmetric Blade Passage
,”
ASME J. Turbomach.
,
130
(
3
), p.
031008
.
29.
Laskowski
,
G.
, and
Felten
,
F.
, “
Steady and Unsteady CFD Simulations of Transonic Turbine Vane Wakes With Trailing Edge Cooling
,”
V European Conference on Computational Fluid Dynamics
,
Lisbon, Portugal
,
June 14–17, 2010
, pp.
1
15
.
30.
Na
,
S.
, and
Shih
,
T. I.
,
2007
, “
Increasing Adiabatic Film-Cooling Effectiveness by Using an Upstream Ramp
,”
ASME J. Heat. Transfer.
,
129
(
4
), pp.
464
471
.
31.
Elkins
,
C. J.
, and
Alley
,
M. T.
,
2007
, “
Magnetic Resonance Velocimetry: Applications of Magnetic Resonance Imaging in the Measurement of Fluid Motion
,”
Exp. Fluids.
,
43
(
6
), pp.
823
858
.
32.
Pelc
,
N.
,
Sommer
,
F.
,
Li
,
K.
,
Brosnan
,
T.
,
Herfkens
,
R.
, and
Enzmann
,
D.
,
1994
, “
Quantitative Magnetic Resonance Flow Imaging
,”
Magn. Reson. Q.
,
10
(
3
), pp.
125
147
.
33.
3D Systems Corporation
.
Data Sheet: Accura 60
.
Rock Hill, SC
.
34.
Ling
,
J.
, and
Eaton
,
J.
, “
Improvements in Turbulent Scalar Mixing Modeling for Trailing Edge Slot Film Cooling Geometries: A Combined Experimental and Computational Approach
,”
TFSA Conference
,
Stanford, CA
,
Jan. 28–30, 2015
, pp.
1
19
.
35.
Benson
,
M. J.
,
Elkins
,
C. J.
,
Mobley
,
P. D.
,
Alley
,
M. T.
, and
Eaton
,
J. K.
,
2009
, “
Three-Dimensional Concentration Field Measurements in a Mixing Layer Using Magnetic Resonance Imaging
,”
Exp. Fluids.
,
49
(
1
), pp.
43
55
.
36.
Issakhanian
,
E.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2011
, “
Magnetic Resonance Imaging Studies of flow and Mixing For Single-Hole Film Cooling
,”
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
,
Vancouver, British Columbia, Canada
,
June 6–10
, pp.
57
64
.
You do not currently have access to this content.