Leakage flow between the rotating turbine blade tip and the fixed casing causes high heat loads and thermal stress on the tip and near the tip region. For this study, new squealer tips called partial cavity tips, which combine the advantages of plane and squealer tips, were suggested, and the effects of the cavity shape on the tip heat transfer coefficient and film cooling effectiveness were investigated experimentally in a low-speed linear cascade. The suggested blade tips had a flat surface near the leading edge and a squealer cavity from the mid-chord to trailing edge region to achieve the advantages of both blade tip types. The heat transfer coefficient was measured via the 1-D transient heat transfer technique using an IR camera, and the film cooling effectiveness was obtained via the pressure-sensitive paint (PSP) technique. Results showed that the heat transfer coefficient and film cooling effectiveness on the partial cavity tips strongly depended on the cavity shape. Near the leading edge, the heat transfer coefficients for the partial cavity tip cases were lower than that for the squealer tip case. However, the heat transfer coefficient on the cavity surface was higher for the partial cavity tip cases. The D10 tip showed a similar distribution of film cooling effectiveness to that of the plane (PLN) tip near the leading edge and the double side squealer (DSS) tip near the mid-chord region. However, the overall average film cooling effectiveness of the DSS tip was higher than that of the D10 tip.

References

References
1.
Acharya
,
S.
,
Yang
,
H.
,
Prakash
,
C.
, and
Bunker
,
R.
,
2003
, “
Numerical Study of Flow and Heat Transfer on a Blade Tip with Different Leakage Reduction Strategies
,”
ASME Turbo Expo 2003, Collocated With the 2003 International Joint Power Generation Conference, Volume 5: Turbo Expo 2003, Parts A and B
,
Atlanta, GA, USA
,
June 16–19, 2003
, pp.
471
480
. ASME Paper No. GT2003-38617.
2.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2002
, “
Heat Transfer Coefficient and Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,”
J. Heat Transfer
,
125
(
3
), pp.
494
502
.
3.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer Coefficients on the Squealer Tip and Near Squealer Tip Regions of a Gas Turbine Blade
,”
J. Heat Transfer
,
125
(
4
), pp.
669
677
.
4.
Kwak
,
J. S.
,
Ahn
,
J.
,
Han
,
J. C.
,
Lee
,
C. P.
,
Boyle
,
R.
,
Gaugler
,
R.
, and
Bunker
,
R. S.
,
2003
, “
Heat Transfer Coefficients on the Squealer Tip and Near Tip Regions of a Gas Turbine Blade with Single or Double Squealer
,”
J. Turbomach.
,
125
(
4
), pp.
778
787
.
5.
Kwak
,
J. S.
,
Ahn
,
J.
, and
Han
,
J. C.
,
2004
, “
Effects of Rim Location, Rim Height, and Tip Clearance on the Tip and Near Tip Region Heat Transfer of a Gas Turbine Blade
,”
Int. J. Heat Mass Transfer
,
47
(
26
), pp.
5651
5663
.
6.
Yang
,
H.
,
Acharya
,
S.
,
Ekkad
,
S. V.
,
Prakash
,
C.
,
Bunker
,
R.
,
2002
, “
Numerical Simulation of Flow and Heat Transfer Past a Turbine Blade With a Squealer Tip
,”
ASME Turbo Expo 2002: Power for Land, Sea, and Air, Volume 3: Turbo Expo 2002, Parts A and B
,
Amsterdam, The Netherlands
,
June 3–6, 2002
, pp.
471
480
. ASME Paper No. GT2002-30193.
7.
El-Gabry
,
L. A.
,
2009
, “
Numerical Modeling of Heat Transfer and Pressure Losses for an Uncooled Gas Turbine Blade Tip: Effect of Tip Clearance and Tip Geometry
,”
J. Therm. Sci. Eng. Appl.
,
1
(
2
), pp.
022005
022005-10
.
8.
Feng
,
D. Y. Z.
,
2007
, “
Tip Leakage Flow and Heat Transfer Predictions for Turbine Blades
,”
ASME Turbo Expo: Power for Land, Sea, and Air, Volume 4: Turbo Expo 2007, Parts A and B
,
Montreal, Canada
,
May 14–17, 2007
, pp.
589
596
. ASME Paper No. GT2007-27728.
9.
Zhou
,
C.
, and
Hodson
,
H.
,
2012
, “
Squealer Geometry Effects on Aerothermal Performance of Tip-Leakage Flow of Cavity Tips
,”
J Propul. Power
,
28
(
3
), pp.
556
567
.
10.
Lamkin
,
N.
,
Granovskiy
,
A.
,
Belkanov
,
V.
,
Szwedowicz
,
J.
,
2013
, “
Effect of Common Blade Tip Squealer Designs in Terms of Tip Clearance Loss Control
,”
ASME 2013 Turbine Blade Tip Symposium
,
Hamburg, Germany
,
Sept. 30–Oct. 3, 2013
, p.
V001T03A005
. ASME Paper No. TBTS2013-2040.
11.
Saha
,
A. K.
,
Acharya
,
S.
,
Bunker
,
R.
,
Prakash
,
C.
,
2006
, “
Blade Tip Leakage Flow and Heat Transfer with Pressure-Side Winglet
,”
ASME Turbo Expo 2003, Collocated With the 2003 International Joint Power Generation Conference, Volume 5: Turbo Expo 2003, Parts A and B
,
Atlanta, GA, USA
,
June 16–19, 2003
, pp.
497
507
. ASME Paper No. GT2003-38620.
12.
Coull
,
J. D.
,
Atkins
,
N. R.
, and
Hodson
,
H. P.
,
2014
, “
Winglets for Improved Aerothermal Performance of High Pressure Turbines
,”
J. Turbomach.
,
136
(
9
),
091007
.
13.
Schabowski
,
Z.
, and
Hodson
,
H.
,
2007
, “
The Reduction of Over Tip Leakage Loss in Unshrouded Axial Turbines Using Winglets and Squealers
,”
J. Turbomach.
,
136
(
4
),
041001
.
14.
Schabowski
,
Z.
,
Hodson
,
H.
,
Giacche
,
D.
,
Power
,
B.
, and
Stokes
,
M. R.
,
2014
, “
Aeromechanical Optimization of a Winglet-Squealer Tip for an Axial Turbine
,”
J. Turbomach.
,
136
(
7
),
071004
.
15.
Prakash
,
C.
,
Lee
,
C. P.
,
Cherry
,
D. G.
,
Doughty
,
R.
, and
Wadia
,
A. R.
,
2006
, “
Analysis of Some Improved Blade tip Concepts
,”
J. Turbomach.
,
128
(
4
), pp.
639
642
.
16.
Mischo
,
B.
,
Behr
,
T.
, and
Abhari
,
R. S.
,
2008
, “
Flow Physics and Profiling of Recessed Blade Tips: Impact on Performance and Heat Load
,”
J. Turbomach.
,
130
(
2
),
021008
.
17.
Nho
,
Y. C.
,
Lee
,
Y. J.
, and
Kwak
,
J. S.
,
2012
, “
Effects of Tip Shape on the Gas Turbine Blade Tip Heat Transfer
,”
J. Thermophys. Heat Transfer
,
26
(
2
), pp.
305
312
.
18.
De Maesschalck
,
C.
,
Lavagnoli
,
S.
, and
Paniagua
,
G.
,
2013
, “
Blade Tip Shape Optimization for Enhanced Turbine Aerothermal Performance
,”
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, Volume 3C: Heat Transfer
,
San Antonio, TX, USA
,
June 3–7, 2013
. ASME Paper No. GT2013-94754.
19.
Park
,
J. S.
,
Lee
,
S. H.
,
Kwak
,
J. S.
,
Lee
,
W. S.
, and
Chung
,
J. T.
,
2013
, “
Measurement of Blade Tip Heat Transfer and Leakage Flow in a Turbine Cascade With a Multi-Cavity Squealer Tip
,”
ASME 2013 Turbine Blade Tip Symposium
,
Hamburg, Germany
,
Sept. 30–Oct. 3, 2013
, ASME Paper No. TBTS2013-2072.
20.
Kwak
,
J. S.
,
2008
, “
Comparison of Analytical and Superposition Solutions of the Transient Liquid Crystal Technique
,”
J. Thermophys. Heat Transfer
,
22
(
2
), pp.
290
295
.
21.
Terzis
,
A.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Ott
,
P.
,
2012
, “
Thermocouple Thermal Inertia Effects on Impingement Heat Transfer Experiments Using the Transient Liquid Crystal Technique
,”
Meas. Sci. Technol.
23
(
11
),
115303
.
22.
Dunn
,
P. T.
,
2005
,
Measurement and Data Analysis
,
McGraw Hill
,
New York
.
23.
Han
,
J. C.
, and
Rallabandi
,
A. P.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
(
1
),
013001
.
You do not currently have access to this content.