Improvements in stage isentropic efficiency and reductions in total pressure loss are sought in a 1.5 stage axial turbine. This is representative of power generation equipment used in thermal power cycles, which delivers about 80% of the 20 × 1012 kWh world-wide electricity. Component-level improvements are therefore timely and important toward achieving carbon dioxide global emission targets. Secondary flow loss reduction is sought by applying a nonaxisymmetric endwall design to the turbine stator hub. A guide groove directs the pressure side branch of the horseshoe vortex away from the airfoil suction side, using a parametric endwall hub surface, which is defined as to obtain first-order smooth boundary connections to the remainder of the passage geometry. This delays the onset of the passage vortex and reduces its associated loss. The Automatic Process and Optimization Workbench (apow) generates a Kriging surrogate model from a set of Reynolds-averaged Navier–Stokes simulations, which is used to optimize the hub surface. The three-dimensional steady Reynolds-averaged Navier–Stokes model with an axisymmetric hub is validated against reference experimental measurements from the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen. Comparative computational fluid dynamics (CFD) predictions with an optimized nonaxisymmetric hub show a decrease in the total pressure loss coefficient and an increase in the isentropic stage efficiency at and off design conditions.

References

References
1.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
2.
Denton
,
J.
, and
Pullan
,
G.
,
2012
, “
A Numerical Investigation Into the Sources of Endwall Loss in Axial Flow Turbines
,”
ASME
Paper No. GT2012-69173.
3.
Kawase
,
M.
, and
Rona
,
A.
,
2018
, “
Multi-Passage Time-Resolved CFD Analysis of Rotor Tip Stall Inception and Passive Control in a Highly-Loaded Axial Compressor
,”
Royal Aeronautical Society Biennial Applied Aerodynamics Research Conference “The Future of Aviation,”
Bristol, UK
,
July 24–26
, Paper No. T.2.
4.
Harvey
,
N.
,
Brennan
,
G.
,
Newman
,
D.
, and
Rose
,
M.
,
2002
, “
Improving Turbine Efficiency Using Non-Axisymmetric End Walls: Validation in the Multi-Row Environment and With Low Aspect Ratio Blading
,”
ASME
Paper No. GT2002-30337.
5.
Harvey
,
N. W.
,
2008
, “
Some Effects of Non-Axisymmetric End Wall Profiling on Axial Flow Compressor Aerodynamics—Part I: Linear Cascade Investigation
,”
ASME
Paper No. GT2008-50990.
6.
Harvey
,
N. W.
, and
Offord
,
T. P.
,
2008
, “
Some Effects of Non-Axisymmetric End Wall Profiling on Axial Flow Compressor Aerodynamics—Part II: Multi-Stage HPC CFD Study
,”
ASME
Paper No. GT2008-50991.
7.
Heinichen
,
F.
,
Gümmer
,
V.
,
Plas
,
A.
, and
Schiffer
,
H. P.
,
2011
, “
Numerical Investigation of the Influence of Non-Axisymmetric Hub Contouring on the Performance of a Shrouded Axial Compressor Stator
,”
CEAS Aeronaut. J.
,
2
(
1–4
), pp.
89
98
.
8.
Hergt
,
A.
,
Dorfner
,
C.
,
Steinert
,
W.
,
Nicke
,
E.
, and
Schreiber
,
H.-A.
,
2011
, “
Advanced Nonaxisymmetric Endwall Contouring for Axial Compressors by Generating an Aerodynamic Separator—Part II: Experimental and Numerical Cascade Investigation
,”
ASME J. Turbomach.
,
133
(
2
), p.
021027
.
9.
Hergt
,
A.
,
Klinner
,
J.
,
Steinert
,
W.
,
Dorfner
,
C.
, and
Nicke
,
E.
,
2011
, “
Detailed Flow Analysis of a Compressor Cascade With a Non-Axisymmetric Endwall Contour
,”
Ninth European Conference on Turbomachinery
,
Istanbul, Turkey
,
Mar. 21–25
, Paper No. A095.
10.
Zimmermann
,
T. W.
,
Curkovic
,
O.
,
Wirsum
,
M.
,
Fowler
,
A.
, and
Patel
,
K.
,
2016
, “
Comparison of 2D and 3D Airfoils in Combination With Non Axisymmetric End Wall Contouring—Part 1: Experimental Investigations
,”
ASME
Paper No. GT2016-56494.
11.
Kim
,
I.
,
Kim
,
J.
,
Cho
,
J.
, and
Kang
,
Y.-S.
,
2016
, “
Non-Axisymmetric Endwall Profile Optimization of a High-Pressure Transonic Turbine Using Approximation Model
,”
ASME
Paper No. GT2016-57970.
12.
Reutter
,
O.
,
Hervé
,
S.
, and
Nicke
,
E.
,
2013
, “
Automated Optimization of the Non-Axisymmetric Hub Endwall of the Rotor of an Axial Compressor
,”
Tenth European Conference on Turbomachinery
,
Lappeenranta, Finland
,
Apr. 15–19
, Paper No. ETC2013-025.
13.
Dunn
,
D.
,
Snedden
,
G.
, and
Von Backström
,
T. W.
, 2010, “
Experimental Investigation Into the Unsteady Effects on Non-Axisymmetric Turbine Endwall Contouring
,”
7th South African Conference on Computational and Applied Mechanics
SACAM 2010,
Pretoria, South Africa
,
Jan. 10–13
, pp.
424
434
.
14.
Hartland
,
J.
,
Gregory-Smith
,
D.
, and
Rose
,
M.
,
1998
, “
Non-Axisymmetric Endwall Profiling in a Turbine Rotor Blade
,”
ASME
Paper No. 98-GT-525.
15.
Bagshaw
,
D.
,
Ingram
,
G.
,
Gregory-Smith
,
D.
,
Stokes
,
M.
, and
Harvey
,
N.
,
2008
, “
The Design of Three-Dimensional Turbine Blades Combined With Profiled Endwalls
,”
Proc. Inst. Mech. Eng., Part A
,
222
(
1
), pp.
93
102
.
16.
Schuepbach
,
P.
,
Abhari
,
R.
,
Rose
,
M.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2010
, “
Improving Efficiency of a High Work Turbine Using Nonaxisymmetric Endwalls—Part II: Time-Resolved Flow Physics
,”
ASME J. Turbomach.
,
132
(
2
), p.
021008
.
17.
Snedden
,
G.
,
2011
, “
The Application of Non-Axisymmetric Endwall Contouring in a 1½ Stage, Rotating Turbine
,” Ph.D. dissertation, Durham University, Durham, UK.
18.
Nagel
,
M. G.
, and
Baier
,
R.-D.
,
2005
, “
Experimentally Verified Numerical Optimization of a Three-Dimensional Parametrized Turbine Vane With Nonaxisymmetric End Walls
,”
ASME J. Turbomach.
,
127
(
2
), pp.
380
387
.
19.
Polynkin
,
A.
,
Toropov
,
V.
, and
Shahpar
,
S.
,
2010
, “
Multidisciplinary Optimization of Turbomachinery Based on Metamodel Built by Genetic Programming
,”
AIAA
Paper No. 2010-9397.
20.
Shahpar
,
S.
,
Caloni
,
S.
, and
de Prieëlle
,
L.
,
2014
, “
Automatic Design Optimization of Profiled Endwalls Including Real Geometrical Effects to Minimize Turbine Secondary Flows
,”
ASME
Paper No. GT2014-26628.
21.
Kang
,
Y.-S.
,
Rhee
,
D.-H.
,
Kim
,
C.-T.
, and
Cha
,
B.-J.
,
2013
, “
Aerodynamic Optimization of Axial Turbine Tip Cavity With Approximation Model
,”
ASME
Paper No. TBTS2013-2079.
22.
Obaida
,
H. M.
,
Kawase
,
M.
,
Rona
,
A.
, and
Gostelow
,
J. P.
,
2016
, “
Some Perspectives on the Treatment of Three-Dimensional Flows on Axial Compressor Blading
,”
ASME
Paper No. GT2016-57617.
23.
Gourdain
,
N.
, and
Leboeuf
,
F.
,
2009
, “
Unsteady Simulation of an Axial Compressor Stage With Casing and Blade Passive Treatment
,”
ASME J. Turbomach.
,
131
(
2
), p.
021013
.
24.
Walraevens
,
R. E.
, and
Gallus
,
H. E.
,
1995
, “
Stator-Rotor-Stator Interaction in an Axial Flow Turbine and its Influence on Loss Mechanisms
,” Paper No.
AGARD CP 571
.http://publications.rwth-aachen.de/record/101899
25.
Volmar
,
T.
,
Brouillet
,
B.
,
Gallus
,
H. E.
, and
Benetschik
,
H.
,
1998
, “
Time Accurate 3D Navier-Stokes Analysis of a 1 1/2 Stage Axial Flow Turbine
,”
AIAA
Paper No. 98-3247.
26.
Gallus
,
H. E.
,
Zeschky
,
J.
,
Weskamp
,
K.
, and
Zebner
,
H.
,
1990
, “
Experimental and Numerical Investigations on the Viscous Flow Through an Axial-Flow Turbine Stage
,” Interfluid 1st International Congress on Fluid Handling Systems, Guga-Halle Essen, Germany, Sept. 10–14, pp. 856–869.
27.
Uroić
,
T.
,
Šojat
,
B.
, and
Jasak
,
H.
,
2017
, “
Development of an Automated Process for Turbine Blade Optimisation
,”
VII International Conference on Computational Models for Coupled Problems in Science and Engineering, Coupled Problems
,
Rhodes Island, Greece
,
June 12–14
, pp.
859
869
.
28.
Yao
,
J.
,
Davis
,
R. L.
,
Alonso
,
J. J.
, and
Jameson
,
A.
,
2002
, “
Massively Parallel Simulation of the Unsteady Flow in an Axial Turbine Stage
,”
AIAA J. Propul. Power
, 18(2), pp. 465–471.
29.
Walraevens
,
R. E.
,
Gallus
,
H. E.
,
Jung
,
A. R.
,
Mayer
,
J. F.
, and
Setter
,
H.
,
1998
, “
Experimental and Computational Study of the Unsteady Flow in a 1.5 Stage Axial Turbine With Emphasis on the Secondary Flow in the Second Stator
,”
ASME
Paper No. 98-GT-254.
30.
Jasak
,
H.
, and
Beaudoin
,
M.
,
2011
, “
OpenFOAM Turbo Tools: From General Purpose CFD to Turbomachinery Simulations
,”
ASME
Paper No. AJK2011-05015.
31.
ANSYS
,
2013
,
ANSYS ICEM CFD Help Manual
,
ANSYS
,
Canonsburg, PA
.
32.
Schwer
,
L. E.
,
2008
, “
Is Your Mesh Refined Enough? Estimating Discretization Error Using GCI
,” 7th German LS-DYNA Forum 2008, Bamberg, Germany, Sept. 30–Oct. 1, pp. 45–54.
33.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.
34.
Reis
,
A. J. F.
,
2013
, “
Validation of NASA Rotor 67 With OpenFOAM's Transonic Density-Based Solver
,” Ph.D. dissertation, New University of Lisbon, Lisbon, Portugal.
35.
Obaida
,
H. M.
,
Kadhim
,
H. T.
,
Rona
,
A.
,
Leschke
,
K.
, and
Gostelow
,
J. P.
,
2017
, “
A Numerical Study of Secondary Flows in a 1.5 Stage Axial Turbine Guiding the Design of Non-Axisymmetric Hub
,”
ASME
Paper No. GT2017-65251.
36.
Kadhim
,
H.
,
Rona
,
A.
,
Gostelow
,
J. P.
, and
Leschke
,
K.
,
2018
, “
Optimization of the Non-Axisymmetric Stator Casing of a 1.5 Stage Axial Turbine
,”
Int. J. Mech. Sci.
,
136
, pp.
503
514
.
You do not currently have access to this content.