Large eddy simulation (LES) is used to explore the boundary layer transition mechanisms in two rectilinear compressor cascades. To reduce numerical dissipation, a novel locally adaptive smoothing (LAS) scheme is added to an unstructured finite volume solver. The performance of a number of subgrid scale (SGS) models is explored. With the first cascade, numerical results at two different freestream turbulence intensities (Ti's), 3.25% and 10%, are compared. At both Ti's, time-averaged skin-friction and pressure coefficient distributions agree well with previous direct numerical simulations (DNS). At Ti = 3.25%, separation-induced transition occurs on the suction surface, while it is bypassed on the pressure surface. The pressure surface transition is dominated by modes originating from the convection of Tollmien–Schlichting waves by Klebanoff streaks. However, they do not resemble a classical bypass transition. Instead, they display characteristics of the “overlap” and “inner” transition modes observed in the previous DNS. At Ti = 10%, classical bypass transition occurs, with Klebanoff streaks incepting turbulent spots. With the second cascade, the influence of unsteady wakes on transition is examined. Wake-amplified Klebanoff streaks were found to instigate turbulent spots, which periodically shorten the suction surface separation bubble. The celerity line corresponding to 70% of the free-stream velocity, which is associated with the convection speed of the amplified Klebanoff streaks, was found to be important.

References

References
1.
Steinert
,
W.
, and
Starken
,
H.
,
1996
, “
Off-Design Transition and Separation Behavior of a CDA Cascade
,”
ASME J. Turbomach.
,
118
(
2
), pp.
204
210
.
2.
Lardeau
,
S.
,
Leschziner
,
M.
, and
Zaki
,
T.
,
2011
, “
Large Eddy Simulation of Transitional Separated Flow Over a Flat Plate and a Compressor Blade
,”
Flow Turbul. Combust
,
88
(
1–2
), pp.
19
44
.
3.
Scillitoe
,
A. D.
,
Tucker
,
P. G.
, and
Adami
,
P.
,
2016
, “
Numerical Investigation of Three-Dimensional Separation in An Axial Flow Compressor: The Influence of Freestream Turbulence Intensity and Endwall Boundary Layer State
,”
ASME J. Turbomach.
,
139
(
2
), p.
021011
.
4.
Adamczyk
,
J. J.
,
Hansen
,
J. L.
, and
Prahst
,
P. S.
,
2007
, “
A Post Test Analysis of a High-Speed Two-Stage Axial Flow Compressor
,”
ASME
Paper No. GT2007-28057.
5.
Zaki
,
T. A.
,
Wissink
,
J. G.
,
Rodi
,
W.
, and
Durbin
,
P. A.
,
2010
, “
Direct Numerical Simulations of Transition in a Compressor Cascade: The Influence of Free-Stream Turbulence
,”
J. Fluid Mech.
,
665
, pp.
57
98
.
6.
Menter
,
F. R.
,
Langtry
,
R.
, and
Völker
,
S.
,
2006
, “
Transition Modelling for General Purpose CFD Codes
,”
Flow Turbul. Combust
,
77
(
1–4
), pp.
277
303
.
7.
Leggett
,
J.
,
Priebe
,
S.
,
Shabbir
,
A.
,
Sandberg
,
R.
,
Richardson
,
E.
, and
Michelassi
,
V.
,
2017
, “
Loss Prediction in An Axial Compressor Cascade at Off-Design Incidences With Free Stream Disturbances
,”
ASME
Paper No. GT2017-64292.
8.
Coull
,
J. D.
, and
Hodson
,
H. P.
,
2011
, “
Unsteady Boundary-Layer Transition in Low-pressure Turbines
,”
J. Fluid Mech.
,
681
, pp.
370
410
.
9.
Medic
,
G.
,
Zhang
,
V.
,
Wang
,
G.
,
Joo
,
J.
, and
Sharma
,
O. P.
,
2016
, “
Prediction of Transition and Losses in Compressor Cascades Using Large-Eddy Simulation
,”
ASME J. Turbomach.
,
138
(
12
), p.
121001
.
10.
Gao
,
F.
,
Zambonini
,
G.
,
Boudet
,
J.
,
Ottavy
,
X.
,
Lu
,
L.
, and
Shao
,
L.
,
2015
, “
Unsteady Behavior of Corner Separation in a Compressor Cascade: Large Eddy Simulation and Experimental Study
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
229
(
5
), pp.
508
519
.
11.
Gbadebo
,
S. A.
,
2003
, “
Three-Dimensional Separations in Compressors
,” Ph.D. thesis, University of Cambridge, Cambridge, UK.
12.
Hilgenfeld
,
L.
, and
Pfitzner
,
M.
,
2004
, “
Unsteady Boundary Layer Development Due to Wake Passing Effects on a Highly Loaded Linear Compressor Cascade
,”
ASME J. Turbomach.
,
126
(
4
), pp.
493
500
.
13.
Piomelli
,
U.
, and
Chasnov
,
R.
,
1996
, “
Large-Eddy Simulations: Theory and Applications
,”
Turbul. Transition Modell.
,
2
, pp.
2269
336
.
14.
Crumpton
,
P.
,
Moinier
,
P.
, and
Giles
,
M.
,
1997
, “
An Unstructured Algorithm for High Reynolds Number Flows on Highly Stretched Grids
,”
Numerical Methods Laminar Turbulent Flow
, Swansea, Wales, pp.
1
13
.
15.
Cui
,
J.
,
Nagabhushana Rao
,
V.
, and
Tucker
,
P.
,
2015
, “
Numerical Investigation of Contrasting Flow Physics in Different Zones of a High-Lift Low-Pressure Turbine Blade
,”
ASME J. Turbomach.
,
138
(
1
), p.
011003
.
16.
Rogers
,
S. E.
,
Kwak
,
D.
, and
Kiris
,
C.
,
1991
, “
Steady and Unsteady Solutions of the Incompressible Navier-Stokes Equations
,”
AIAA J.
,
29
(
4
), pp.
603
610
.
17.
Roe
,
P.
,
1986
, “
Characteristic-Based Schemes for the Euler Equations
,”
Annu. Rev. Fluid Mech.
,
18
(
1
), pp.
337
365
.
18.
Tajallipour
,
N.
,
Babaee Owlam
,
B.
, and
Paraschivoiu
,
M.
,
2009
, “
Self-Adaptive Upwinding for Large Eddy Simulation of Turbulent Flows on Unstructured Elements
,”
J. Aircr.
,
46
(
3
), pp.
915
926
.
19.
Bassenne
,
M.
,
Urzay
,
J.
,
Park
,
G. I.
, and
Moin
,
P.
,
2016
, “
Constant-Energetics Physical-Space Forcing Methods for Improved Convergence to Homogeneous-Isotropic Turbulence With Application to Particle-Laden Flows
,”
Phys. Fluids
,
28
(
3
), p.
035114
.
20.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.
21.
Schumann
,
U.
,
1975
, “
Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli
,”
J. Comput. Phys.
,
18
(
4
), pp.
376
404
.
22.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust
,
62
(
3
), pp.
183
200
.
23.
Nicoud
,
F.
,
Toda
,
H. B.
,
Cabrit
,
O.
,
Bose
,
S.
, and
Lee
,
J.
,
2011
, “
Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations
,”
Phys. Fluids
,
23
(
8
), p.
085106
.
24.
Saad
,
T.
,
Cline
,
D.
,
Stoll
,
R.
, and
Sutherland
,
J. C.
,
2016
, “
Scalable Tools for Generating Synthetic Isotropic Turbulence With Arbitrary Spectra
,”
AIAA J.
,
55
(
1
), pp.
1
14
.
25.
Bailly
,
C.
, and
Juve
,
D.
,
1999
, “
A Stochastic Approach to Compute Subsonic Noise Using Linearized Euler's Equations
,”
AIAA
Paper No. 99-1872.
26.
Wu
,
X.
,
Jacobs
,
R. G.
,
Hunt
,
J. C. R.
, and
Durbin
,
P. A.
,
1999
, “
Simulation of Boundary Layer Transition Induced by Periodically Passing Wakes
,”
J. Fluid Mech.
,
398
, pp.
109
153
.
27.
Saric
,
W. S.
,
1994
, “
Gortler Vortices
,”
Annu. Rev. Fluid Mech.
,
26
(
1
), pp.
379
409
.
28.
Jacobs
,
R. G.
, and
Durbin
,
P. A.
,
2001
, “
Simulations of Bypass Transition
,”
J. Fluid Mech.
,
428
, pp.
185
212
.
29.
Zaki
,
T. A.
, and
Durbin
,
P. A.
,
2006
, “
Continuous Mode Transition and the Effects of Pressure Gradient
,”
J. Fluid Mech.
,
563
, pp.
357
388
.
30.
Cumpsty
,
N. A.
,
Dong
,
Y.
, and
Li
,
Y. S.
,
1995
, “
Compressor Blade Boundary Layers in the Presence of Wakes
,”
ASME
Paper No. 95-GT-443.
31.
Sayadi
,
T.
, and
Moin
,
P.
,
2012
, “
Large Eddy Simulation of Controlled Transition to Turbulence
,”
Phys. Fluids
,
24
(
11
), p.
114103
.
You do not currently have access to this content.