Optimal turbine blade tip designs have the potential to enhance aerodynamic performance while reducing the thermal loads on one of the most vulnerable parts of the gas turbine. This paper describes a novel strategy to perform a multi-objective optimization of the tip geometry of a cooled turbine blade. The parameterization strategy generates arbitrary rim shapes around the coolant holes on the blade tip. The tip geometry performance is assessed using steady Reynolds-averaged Navier–Stokes simulations with the k–ω shear stress transport (SST) model for the turbulence closure. The fluid domain is discretized with hexahedral elements, and the entire optimization is performed using identical mesh characteristics in all simulations. This is done to ensure an adequate comparison among all investigated designs. Isothermal walls were imposed at engine-representative levels to compute the convective heat flux for each case. The optimization objectives were a reduction in heat load and an increase in turbine row efficiency. The multi-objective optimization is performed using a differential evolution strategy. Improvements were achieved in both the aerodynamic efficiency and heat load reduction, relative to a conventional squealer tip arrangement. Furthermore, this work demonstrates that the inclusion of over-tip coolant flows impacts the over-tip flow field, and that the rim–coolant interaction can be used to create a synergistic performance enhancement.

References

References
1.
Bunker
,
R. S.
,
2006
, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
J. Propul. Power
,
22
(
2
), pp.
271
285
.
2.
Bunker
,
R. S.
,
2001
, “
A Review of Turbine Blade Tip Heat Transfer
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
64
79
.
3.
Harvey
,
N. W.
,
2004
, “
Aerothermal Implications of Shroudless and Shrouded Blades
,” Turbine Blade Tip Design and Tip Clearance Treatment, VKI Lecture Series, No. 2004-02.
4.
Coull
,
J. D.
,
Atkins
,
N. R.
, and
Hodson
,
H. P.
,
2014
, “
Winglets for Improved Aerothermal Performance of High Pressure Turbines
,”
ASME J. Turbomach.
,
136
(
9
), p.
091007
.
5.
O'Dowd
,
D. O.
,
Zhang
,
Q.
,
He
,
L.
,
Oldfield
,
M. L. G.
,
Ligrani
,
P. M.
,
Cheong
,
B. C. Y.
, and
Tibbott
,
I.
,
2011
, “
Aerothermal Performance of a Winglet at Engine Representative Mach and Reynolds Numbers
,”
ASME J. Turbomach.
,
133
(
4
), p.
041026
.
6.
Denton
,
J. D.
, and
Cumpsty
,
N. A.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
7.
Key
,
N. L.
, and
Arts
,
T.
,
2006
, “
Comparison of Turbine Tip Leakage Flow for Flat Tip and Squealer Tip Geometries at High-Speed Conditions
,”
ASME J. Turbomach.
,
128
(
2
), pp.
213
220
.
8.
Harvey
,
N. W.
, and
Ramsden
,
K.
,
2001
, “
A Computational Study of a Novel Turbine Rotor Partial Shroud
,”
ASME J. Turbomach.
,
123
(
3
), pp.
534
543
.
9.
Zhang
,
Q.
,
He
,
L.
,
Wheeler
,
A. P. S.
,
Ligrani
,
P. M.
, and
Cheong
,
B. C. Y.
,
2001
, “
Overtip Shock Wave Structure and Its Impact on Turbine Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041001
.
10.
De Maesschalck
,
C.
,
Lavagnoli
,
S.
,
Paniagua
,
G.
, and
Vinha
,
N.
,
2014
, “
Aerothermodynamics of Tight Rotor Tip Clearance Flows in High-Speed Unshrouded Turbines
,”
Appl. Therm. Eng.
,
65
(
1–2
), pp.
343
351
.
11.
Zhang
,
Q.
, and
He
,
L.
,
2013
, “
Tip-Shaping for HP Turbine Blade Aerothermal Performance Management
,”
ASME J. Turbomach.
,
135
(
5
), p.
051025
.
12.
De Maesschalck
,
C.
,
Lavagnoli
,
S.
,
Paniagua
,
G.
,
Verstraete
,
T.
,
Olive
,
R.
, and
Picot
,
P.
,
2016
, “
Heterogeneous Optimization Strategies for Carved and Squealer-Like Turbine Blade Tips
,”
ASME J. Turbomach.
,
138
(
12
), p.
121011
.
13.
Dunn
,
M. G.
,
2001
, “
Convective Heat Transfer and Aerodynamics in Axial Flow Turbines
,”
ASME J. Turbomach.
,
123
(
4
), pp.
637
686
.
14.
Wang
,
Z.
,
Zhang
,
Q.
,
Liu
,
Y.
, and
He
,
L.
,
2015
, “
Impact of Cooling Injection on the Transonic Over-Tip Leakage Flow and Squealer Aerothermal Design Optimization
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
062603
.
15.
Mhetras
,
S.
,
Narzary
,
D.
,
Gao
,
Z.
, and
Han
,
J. C.
,
2008
, “
Effect of a Cutback Squealer and Cavity Depth on Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
,
130
(
2
), p.
021002
.
16.
Verstraete
,
T.
,
Amaral
,
S.
,
Van den Braembussche
,
R.
, and
Arts
,
T.
,
2010
, “
Design and Optimization of the Internal Cooling Channels of a High Pressure Turbine Blade—Part II: Optimization
,”
ASME J. Turbomach.
,
132
(
2
), p.
021014
.
17.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T. A. M. T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
18.
Montgomery
,
D. C.
,
2017
,
Design and Analysis of Experiments
,
Wiley
, Hoboken, NJ.
19.
Yasa
,
T.
,
Paniagua
,
G.
, and
Bussolin
,
A.
,
2007
, “
Performance Analysis of a Transonic High-Pressure Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
6
), pp.
769
778
.
You do not currently have access to this content.