Flow structures in lattice cooling channels are investigated experimentally by measuring three-dimensional (3D) velocity components over entire duct. The lattice cooling structure is formed by crossing two sets of parallel inclined ribs. Heat transfer is enhanced when coolant flows through the narrow subchannels between the ribs. According to the past literature, longitudinal vortex structures are formed inside the subchannels due to interactions between crossing flows. In this study, 3D velocity field measurement is performed using magnetic resonance imaging (MRI) scanner to clarify the flow mechanism. The rib inclination angle is varied from 30 to 60 deg. Reynolds number is set at approximately 8000 based on the whole duct inlet hydraulic diameter and bulk velocity. Working fluid is 0.015 mol/L copper sulfate aqueous solution. Measured results show that coolants in the upper and lower subchannels interact not only at the both ends of the duct, but also at diamond-shaped openings formed by opposite subchannels. The exchange of momentum between the upper and lower subchannels occurs at the openings, leading to sustained longitudinal vortex in each subchannel as mentioned in the literature. When the ribs are arranged with obtuse angle, a large vortex spreads across the contact surface, while the vortex structure independently stays in each subchannel for acute rib angle. The measured velocity fields are compared with numerically-simulated ones using a Reynolds-averaged Navier-Stokes (RANS) solver. Overall flow pattern is captured, but flow interaction between the upper and lower subchannels is underestimated.

References

References
1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
2nd ed.
,
CRC Press
, Boca Raton, FL.
2.
Khalatov
,
A. A.
, and
Nam
,
C. D.
,
2004
, “
Aerothermal Vortex Technologies in Aerospace Engineering
,”
J. Korean Soc. Mar. Eng.
,
28
(
2
), pp.
163
184
.http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=BOGGBY_2004_v28n2_163
3.
Goreloff
,
V.
,
Goychengerg
,
M.
, and
Malkoff
,
V.
,
1990
, “
The Investigation of Heat Transfer in Cooled Blades of Gas Turbines
,”
AIAA
Paper No. 90-2144.
4.
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Dailey
,
G. M.
,
2000
, “
Detailed Flow and Heat Transfer Coefficient Measurements in a Model of an Internal Cooling Geometry Employing Orthogonal Intersecting Channels
,”
ASME
Paper No. 2000-GT-653
.
5.
Saha
,
K.
,
Guo
,
S.
,
Acharya
,
S.
, and
Nakamata
,
C.
,
2008
, “
Heat Transfer and Pressure Measurements in a Lattice-Cooled Trailing Edge of a Turbine Airfoil
,”
ASME
Paper No. GT2008-51324
.
6.
Bunker
,
R. S.
,
2004
, “
Latticework (Vortex) Cooling Effectiveness—Part 1: Stationary Channel Experiments
,”
ASME
Paper No. GT2004-54157
.
7.
Acharya
,
S.
,
Zhou
,
F.
,
Legrone
,
J.
,
Mahmood
,
G.
, and
Bunker
,
R. S.
,
2004
, “
Latticework (Vortex) Cooling Effectiveness—Part 2: Rotating Channel Experiments
,”
ASME
Paper No. GT2004-53983
.
8.
Oh
,
I. T.
,
Kim
,
K. M.
,
Lee
,
D. H.
,
Park
,
J. S.
, and
Cho
,
H. H.
,
2009
, “
Local Heat/Mass Transfer and Friction Loss Measurement in a Rotating Matrix Cooling Channel
,”
ASME
Paper No. GT2009-59873
.
9.
Carcasci
,
C.
,
Facchini
,
B.
,
Pievaroli
,
M.
,
Tarchi
,
L.
,
Ceccherini
,
A.
, and
Innocenti
,
L.
,
2015
, “
Heat Transfer and Pressure Drop Measurements on Rotating Matrix Cooling Geometries for Airfoil Trailing Edges
,”
ASME
Paper No. GT2015-42594
.
10.
Su
,
S.
,
Liu
,
J. J.
,
Fu
,
J. I.
,
Hu
,
J.
, and
An
,
B. T.
,
2008
, “
Numerical Investigation of Fluid Flow and Heat Transfer in a Turbine Blade With Serpentine and Latticework Cooling
,”
ASME
Paper No. GT2008-50392
.
11.
Guo
,
P. Q.
,
Huang
,
M. H.
,
Zang
,
S. S.
,
Rao
,
Y.
, and
Song
,
H. F.
,
2009
, “
Effects of Cooling Air Parameters on a Turbine Blade With Latticework Internal Cooling Structure
,”
Asian Congress on Gas Turbines
, Tokyo, Japan, Aug. 24–26, Paper No. ACGT 2009-TS37.
12.
Rao
,
Y.
,
Zhang
,
X.
, and
Zang
,
S.
,
2013
, “
Flow and Heat Transfer Characteristics in Latticework Cooling Channels With Dimple Vortex Generators
,”
ASME
Paper No. GT2013-95237
.
13.
Hagari
,
T.
, and
Ishida
,
K.
,
2013
, “
Numerical Investigation on Flow and Heat Transfer in a Lattice (Matrix) Cooling Channel
,”
ASME
Paper GT2013-95412
.
14.
Luan
,
Y.
,
Bu
,
S.
,
Sun
,
H.
, and
Sun
,
T.
,
2016
, “
Numerical Investigation on Flow and Heat Transfer in Matrix Cooling Channels for Turbine Blades
,”
ASME
Paper No. GT2016-56279
.
15.
Fukushima
,
E.
,
1999
, “
Nuclear Magnetic Resonance as a Tool to Study Flow
,”
Annu. Rev. Fluid Mech.
,
31
(
1
), pp.
95
123
.
16.
Ku
,
D. N.
,
Biancheri
,
C. L.
,
Pettigrew
,
R. I.
,
Peifer
,
J. W.
,
Markou
,
C. P.
, and
Engels
,
H.
,
1990
, “
Evaluation of Magnetic Resonance Velocimetry for Steady Flow
,”
ASME J. Biomech. Eng.
,
112
(
4
), pp.
464
472
.
17.
Li
,
T. Q.
,
Seymour
,
J. D.
,
Powell
,
R. L.
,
McCarthy
,
K. L.
,
Odberg
,
L.
, and
McCarthy
,
M. J.
,
1994
, “
Turbulent Pipe Flow Studied by Time-Averaged NMR Imaging: Measurements of Velocity Profile and Turbulent Intensity
,”
Magn. Reson. Imaging
,
12
(
6
), pp.
923
934
.
18.
Kato
,
Y.
, and
Himeno
,
R.
,
2003
, “
Velocity Profile Characteristics pf the Phase Contrast Method for Estimating Flow in a U-Shaped Tube
,”
Trans. JSMBE
,
41
(
4
), pp.
306
313
(in Japanese).
19.
Akata
,
S.
,
Darkanzannli
,
A.
,
Gmitro
,
A. F.
,
Unger
,
E. C.
,
Capp
,
M. P.
, and
Abe
,
K.
,
2000
, “
Measurement of Flow Velocity by Magnetic Resonance Imaging Using 2D Phase Contrast Technique: Estimation of Oblique Flow
,”
J. Tokyo Medical Univ.
,
58
(
3
), pp.
278
285
.https://tmu.repo.nii.ac.jp/?action=repository_uri&item_id=6772&file_id=22&file_no=1
20.
Elkins
,
C. J.
,
Markl
,
M.
,
Pelc
,
N.
, and
Eaton
,
J. K.
,
2003
, “
4D Magnetic Resonance Velocimetry for Mean Velocity Measurements in Complex Turbulent Flows
,”
Exp. Fluids
,
34
(
4
), pp.
494
503
.
21.
Siekman
,
M.
,
Helmer
,
D.
,
Hwang
,
W.
,
Laskowski
,
G.
,
Tan
,
E. T.
, and
Natsui
,
G.
,
2014
, “
A Combined CFD/MRV Study of Flow Through a Pin Bank
,”
ASME
Paper No. GT2014-25350
.
22.
Fujita
,
J.
,
Takeishi
,
K.
,
Kushida
,
N.
,
Tsuru
,
T.
, and
Oda
,
Y.
,
2017
, “
Three-Dimensional Velocity Distribution Measurement of an Air Cooled Flow Passage for Gas Turbine Blades by Using Magnetic Resonance Imaging
,”
11th Pacific Symposium on Flow Visualization and Image Processing
, Kumamoto, Japan, Dec. 1–3, Paper No. 118.
23.
Ling
,
J.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2015
, “
Optimal Turbulent Schmidt Number for RANS Modeling of Trailing Edge Slot Film Cooling
,”
ASME J. Eng. Gas Turbine Power
,
137
(
7
), p.
072605
.
24.
Software Cradle Co.
,
2016
, “
SC/Tetra® Version 13 Users Guide
,” Software Cradle, Osaka, Japan.
25.
Craft
,
T. J.
,
Gerasimov
,
A. V.
,
Iacovides
,
H.
, and
Launder
,
B.
,
2002
, “
Progress in the Generalization of Wall-Function Treatments
,”
Int. J. Heat Fluid Flow
,
23
(
2
), pp.
148
160
.
You do not currently have access to this content.