This study addresses flutter that can occur in compressors when operating at high relative incidence. Studies are performed on a subsonic annular compressor cascade containing a sector of blades that can be subjected to controlled torsional oscillation. Measurements taken on the centrally located blade are used to study the unsteady surface pressures developed. Three large mean incidences are considered to characterize the aeroelastic performance. Aerodynamic damping is calculated for each test condition and its variation due to interblade phase angle (IBPA), reduced frequency, and incidence is studied. The source of stability or instability is traced to the nature of unsteady pressures. When the incidence is below the static-stall limit, an increasing incidence is found to exhibit aeroelastically more stable performance, whereas beyond the limit, the stability worsens. For the latter, the amount of improvement in stability by increasing reduced frequency is less compared to the former and its variation with IBPA is not as regular owing to the associated large uncertainty. The nonlinearity effects were found to be relatively higher for this case, especially from the aft region of the suction surface. It is also found that the phase of the local fluctuating pressure and its location on the chord has a decisive influence on the aerodynamic damping and its trends with respect to various parameters are discussed. The results are expected to be useful in the assessing aerodynamic damping trends in relation to the pressure phase variations in specific regions along the chord.

References

References
1.
Garrison
,
B.
,
2000
, “
High Cycle Fatigue (HCF) Science and Technology Program
,” Propulsion Directorate Air Force Research Laboratory Air Force Materiel Command Wright-Patterson Air Force Base, Dayton, OH, Report No.
AFRL-PR-WP-TR-2001-2010
.
2.
Troha
,
W.
, and
Swain
,
K.
,
1976
, “
Composite Inlays Increase Flutter Resistance of Turbine Engine Fan Blades Composite Inlays Increase Flutter Resistance of Turbine Engine Fan Blades
,”
ASME
Paper No. 76-GT-29.
3.
Jeffers
,
J. D.
, II.
, and
Meece
,
C. E.
,
1975
, “
F100 Fan Stall Flutter Problem Review and Solution
,”
J. Aircr.
,
12
(
4
), pp.
350
357
.
4.
Platzer
,
M. F.
, and
Carta
,
F. O.
,
1987
, “
AGARD Manual on Aeroelasticity in Axial-Flow Turbomachines—Volume 1: Unsteady Turbomachinery Aerodynamics
,” DTIC Document, Paper No.
AGARD-AG-298
.https://www.sto.nato.int/publications/AGARD/AGARD-AG-298-VOL-1/AGARD-AG-298-Vol-1.pdf
5.
Bendiksen
,
O.
,
1990
, “
Aeroelastic Problems in Turbomachines
,”
AIAA
Paper No. AIAA-90-1157.
6.
Verdon
,
J. M.
,
1993
, “
Review of Unsteady Aerodynamic Methods for Turbomachinery Aeroelastic and Aeroacoustic Applications
,”
AIAA J.
,
31
(
2
), pp.
235
250
.
7.
Srinivasan
,
A. V.
,
1997
, “
Flutter and Resonant Vibration Characteristics of Engine Blades
,”
ASME J. Eng. Gas Turbines Power
,
119
(
4
), pp.
742
775
.
8.
Carta
,
F. O.
, and
Hilaire
,
A. O. S.
,
1980
, “
Effect of Interblade Phase Angle and Incidence Angle on Cascade Pitching Stability
,”
ASME J. Eng. Power
,
102
(
2
), pp.
391
396
.
9.
Bölcs
,
A.
, and
Körbächer
,
H.
,
1993
, “
Periodicity and Repetivity of Unsteady Measurements of an Annular Turbine Cascade at Off Design Flow Conditions
,”
ASME
Paper No. 93-GT-107.
10.
Körbächer
,
H.
, and
Bölcs
,
A.
,
1994
, “
Experimental Investigation of the Unsteady Behavior of a Compressor Cascade in an Annular Ring Channel
,”
Seventh International Symposium on Unsteady Aerodynamics and Aeroelasticity of Turbomachinery
, Fukuoka, Japan, Sept. 25–29, Paper No. LTT-CONF-1994-002.
11.
Buffum
,
D. H.
,
Capece
,
V. R.
,
King
,
A. J.
, and
EL-Aini
,
Y. M.
,
1996
, “
Oscillating Cascade Aerodynamics at Large Mean Incidence
,”
ASME J. Turbomach.
,
120
(
1
), pp.
122
130
.
12.
Vahdati
,
M.
,
Sayma
,
A. I.
,
Marshall
,
J. G.
, and
Imregun
,
M.
,
2001
, “
Mechanisms and Prediction Methods for Fan Blade Stall Flutter
,”
AIAA J. Propul. Power
,
17
(
5
), pp.
1100
1108
.https://arc.aiaa.org/doi/10.2514/2.5850
13.
Hayden
,
J.
,
Capece
,
V.
, and
Lepicovsky
,
J.
,
2002
, “
The Influence Coefficient Method for Airfoils Oscillating in Pitch at Large Incidence
,”
AIAA
Paper No. AIAA-2002-4087.
14.
Vogt
,
D. M.
, and
Fransson
,
T. H.
,
2007
, “
Experimental Investigation of Mode Shape Sensitivity of an Oscillating Low-Pressure Turbine Cascade at Design and Off-Design Conditions
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
530
541
.
15.
Yang
,
H.
, and
He
,
L.
,
2004
, “
Experimental Study on Linear Compressor Cascade With Three-Dimensional Blade Oscillation
,”
AIAA J. Propul. Power
,
20
(
1
), pp.
180
188
.
16.
Besem
,
F. M.
, and
Kielb
,
R. E.
,
2017
, “
Influence of the Tip Clearance on a Compressor Blade Aerodynamic Damping
,”
AIAA J. Propul. Power
,
33
(
1
), pp.
227
233
.
17.
Seeley
,
C. E.
,
Wakelam
,
C.
,
Zhang
,
X.
,
Hofer
,
D.
, and
Ren
,
W.-M.
,
2017
, “
Investigations of Flutter and Aerodynamic Damping of a Turbine Blade: Experimental Characterization
,”
ASME J. Turbomach.
,
139
(
8
), p.
081011
.
18.
Keerthi
,
M. C.
,
Sundararaj
,
R. H.
,
Chandra Sekar
,
T.
,
Arora
,
R.
, and
Kushari
,
A.
,
2016
, “
Design and Characterization of an Annular Cascade Tunnel
,”
Asian Congress on Gas Turbines
, Mumbai, India, Nov. 14–16, Paper No. ACGT2016-67.
19.
Bölcs
,
A.
, and
Fransson
,
T. H.
,
1986
, “
Aeroelasticity in Turbomachines—Comparison of Theoretical and Experimental Results
,” Communication du Laboratoire de Thermique Appliqué et de Turbomachines No. 13, EPFL, Lausanne, Switzerland.
20.
Fransson
,
T. H.
, and
Verdon
,
J. M.
,
1992
, “
Updated Report on ‘Standard Configurations for Unsteady Flow Through Vibrating Axial-Flow Turbomachine Cascades’: Status as of July 1991
,” Royal Institute of Technology, Stockholm, Sweden and United Technologies Research Center, East Hartford, CT,
Report
.http://www.egi.kth.se/proj/Projects/Markus%20joecker/STCF/STCF1to10/Documents/SC2110.92update.pdf
21.
Cho
,
N. H.
,
Liu
,
X.
,
Rodi
,
W.
, and
Schönung
,
B.
,
1992
, “
Calculation of Wake-Induced Unsteady Flow in a Turbine Cascade
,”
ASME
Paper No. 92-GT-306.
22.
Yang
,
H.
,
Sims-Williams
,
D. B.
, and
He
,
L.
,
2006
, “
Unsteady Pressure Measurement With Correction on Tubing Distortion
,”
Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines
,
K. C.
Hall
,
R. E.
Kielb
, and
J. P.
Thomas
, ed.,
Springer
,
Dordrecht
, The Netherlands, pp.
521
529
.
23.
Carta
,
F. O.
,
1982
, “
An Experimental Investigation of Gapwise Periodicity and Unsteady Aerodynamic Response in an Oscillating Cascade I—Experimental and Theoretical Results
,” National Aeronautics and Space Administration, Washington, DC, NASA Report No.
NASA-CR-3513
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19820018353.pdf
24.
Chenaux
,
V. A.
,
2012
, “
Experimental Investigation of the Aeroelastic Stability of an Annular Compressor Cascade at Reverse Flow Conditions
,”
Ph.D. dissertation
, École polytechnique fédérale de Lausanne, Lausanne, Switzerland.https://infoscience.epfl.ch/record/177599?ln=en
25.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
26.
Cowen
,
S.
, and
Ellison
,
S. L.
,
2006
, “
Reporting Measurement Uncertainty and Coverage Intervals Near Natural Limits
,”
Analyst
,
131
(
6
), pp.
710
717
.
27.
McCroskey
,
W. J.
,
1981
, “
The Phenomenon of Dynamic Stall
,” National Aeronautics and Space Administration, Washington, DC, NASA, Report No.
NASA-TM-81264, A-8464
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19810011501.pdf
28.
Yamagami
,
M.
,
Kodama
,
H.
, and
Yamamoto
,
K.
,
2013
, “
Unsteady Effects on Spanwise Mixing Phenomena in a Multistage Axial Flow Compressor
,”
13th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines, Tokyo, Japan, Paper No. ISUAAT13-S4-7
.
29.
Lee
,
T.
, and
Gerontakos
,
P.
,
2004
, “
Investigation of Flow Over an Oscillating Airfoil
,”
J. Fluid Mech.
,
512
, pp.
313
341
.
30.
Keerthi
,
M. C.
,
Shubham
,
S.
, and
Kushari
,
A.
,
2017
, “
Aerodynamic Influence of Oscillating Adjacent Airfoils in a Linear Compressor Cascade
,”
AIAA J.
,
55
(
12
), pp.
4113
4126
.
31.
Lee
,
T.
, and
Su
,
Y. Y.
,
2015
, “
Surface Pressures Developed on an Airfoil Undergoing Heaving and Pitching Motion
,”
ASME J. Fluid Eng.
,
137
(
5
), p.
051105
.
32.
Nowinski
,
M.
, and
Panovsky
,
J.
,
1999
, “
Flutter Mechanisms in Low Pressure Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
82
88
.
33.
Belz
,
J.
, and
Hennings
,
H.
,
2006
, “
Experimental Flutter Investigations of an Annular Compressor Cascade: Influence of Reduced Frequency on Stability
,”
Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines
,
K. C.
Hall
,
R. E.
Kielb
, and
J. P.
Thomas
, eds.,
Springer
,
Dordrecht
, The Netherlands, pp.
77
91
.
34.
Zhang
,
X.
,
Wang
,
Y.
, and
Xu
,
K.
,
2012
, “
Mechanisms and Key Parameters for Compressor Blade Stall Flutter
,”
ASME J. Turbomach.
,
135
(
2
), p.
024501
.
35.
Gülçat
,
Ü.
,
2016
,
Fundamentals of Modern Unsteady Aerodynamics
,
Springer
,
Singapore
.
36.
Corral
,
R.
, and
Vega
,
A.
,
2015
, “
The Low Reduced Frequency Limit of Vibrating Airfoils—Part I: Theoretical Analysis
,”
ASME J. Turbomach.
,
138
(
2
), p.
021004
.
37.
Corral
,
R.
, and
Vega
,
A.
,
2015
, “
Physics of Vibrating Turbine Airfoils at Low Reduced Frequency
,”
AIAA J. Propul. Power
,
32
(
2
), pp.
325
336
.
38.
Dunne
,
R.
,
Schmid
,
P. J.
, and
McKeon
,
B. J.
,
2016
, “
Analysis of Flow Timescales on a Periodically Pitching/Surging Airfoil
,”
AIAA J.
,
54
(
11
), pp.
3421
3433
.
39.
Watanabe
,
T.
, and
Aotsuka
,
M.
,
2005
, “
Unsteady Aerodynamic Characteristics of Oscillating Cascade With Separation Bubble in High Subsonic Flow
,”
ASME
Paper No. GT2005-68665.
40.
Frey
,
K. K.
, and
Fleeter
,
S.
,
2001
, “
Oscillating Airfoil Aerodynamics of a Rotating Compressor Blade Row
,”
AIAA J. Propul. Power
,
17
(
2
), pp.
232
239
.
You do not currently have access to this content.