In aerodynamic design, accurate and robust surrogate models are important to accelerate computationally expensive computational fluid dynamics (CFD)-based optimization. In this paper, a machine learning framework is presented to speed-up the design optimization of a highly loaded transonic compressor rotor. The approach is threefold: (1) dynamic selection and self-tuning among several surrogate models; (2) classification to anticipate failure of the performance evaluation; and (3) adaptive selection of new candidates to perform CFD evaluation for updating the surrogate, which facilitates design space exploration and reduces surrogate uncertainty. The framework is demonstrated with a multipoint optimization of the transonic NASA rotor 37, yielding increased compressor efficiency in less than 48 h on 100 central processing unit cores. The optimized rotor geometry features precompression that relocates and attenuates the shock, without the stability penalty or undesired reacceleration usually observed in the literature.

References

References
1.
Denton
,
J.
,
1997
, “
Lessons From Rotor 37
,”
J. Therm. Sci.
,
6
(
1
), pp.
1
13
.
2.
Oyama
,
A.
,
Liou
,
M.-S.
, and
Obayashi
,
S.
,
2004
, “
Transonic Axial-Flow Blade Optimization: Evolutionary Algorithms/Three-Dimensional Navier-Stokes Solver
,”
J. Propul. Power
,
20
(
4
), pp.
612
619
.
3.
Reid
,
L.
, and
Moore
,
R. D.
,
1978
, “
Design and Overall Performance of Four Highly Loaded, High Speed Inlet Stages for an Advanced High-Pressure-Ratio Core Compressor
,” Report No. NASA-TP-1337, E-9302.
4.
John
,
A.
,
Shahpar
,
S.
, and
Qin
,
N.
,
2017
, “
Novel Compressor Blade Shaping Through a Free-Form Method
,”
ASME J. Turbomach.
,
139
(
8
), p.
081002
.
5.
Luo
,
J.
,
Zhou
,
C.
, and
Liu
,
F.
,
2014
, “
Multipoint Design Optimization of a Transonic Compressor Blade by Using an Adjoint Method
,”
ASME J. Turbomach.
,
136
(
5
), p.
051005
.
6.
Chima
,
R. V.
,
2009
, “
Swift Code Assessment for Two Similar Transonic Compressors
,”
AIAA
Paper No. AIAA-2009-1058
.
7.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
.
8.
Abraham
,
A.
, and
Jain
,
L.
,
2005
,
Evolutionary Multiobjective Optimization
, Springer, London, pp.
1
6
.
9.
Jin
,
Y.
, and
Sendhoff
,
B.
,
2009
, “
A Systems Approach to Evolutionary Multiobjective Structural Optimization and Beyond
,”
IEEE Comput. Intell. Mag.
,
4
(
3
), pp. 62–76.
10.
Jin
,
Y.
,
2011
, “
Surrogate-Assisted Evolutionary Computation: Recent Advances and Future Challenges
,”
Swarm Evol. Comput.
,
1
(
2
), pp.
61
70
.
11.
Doherty
,
J.
, and
Christensen
,
S.
,
2011
, “
Use of Paired Simple and Complex Models to Reduce Predictive Bias and Quantify Uncertainty
,”
Water Resour. Res.
,
47
(
12
), p. 21.
12.
Young
,
P. C.
, and
Ratto
,
M.
,
2011
, “
Statistical Emulation of Large Linear Dynamic Models
,”
Technometrics
,
53
(
1
), pp.
29
43
.
13.
Vuik
,
C.
,
Segal
,
A.
, and
Meijerink
,
J.
,
1999
, “
An Efficient Preconditioned cg Method for the Solution of a Class of Layered Problems With Extreme Contrasts in the Coefficients
,”
J. Comput. Phys.
,
152
(
1
), pp.
385
403
.
14.
Díaz-Manríquez
,
A.
,
Toscano
,
G.
,
Barron-Zambrano
,
J. H.
, and
Tello-Leal
,
E.
,
2016
, “
A Review of Surrogate Assisted Multiobjective Evolutionary Algorithms
,”
Comput. Intell. Neurosci.
,
2016
, p. 14.
15.
Myers
,
R. H.
,
Montgomery
,
D. C.
, and
Anderson-Cook
,
C. M.
,
2016
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
Wiley
, New York.
16.
Hardy
,
R. L.
,
1971
, “
Multiquadric Equations of Topography and Other Irregular Surfaces
,”
J. Geophys. Res.
,
76
(
8
), pp.
1905
1915
.
17.
Rosales-Pérez
,
A.
,
Coello
,
C. A. C.
,
Gonzalez
,
J. A.
,
Reyes-Garcia
,
C. A.
, and
Escalante
,
H. J.
,
2013
, “
A Hybrid Surrogate-Based Approach for Evolutionary Multi-Objective Optimization
,”
IEEE Congress on Evolutionary Computation
(
CEC
), Cancun, Mexico, June 20–23, pp.
2548
2555
.
18.
Schalkoff
,
R. J.
,
1997
,
Artificial Neural Networks
, Vol.
1
,
McGraw-Hill
,
New York
.
19.
Verstraete
,
T.
,
Coletti
,
F.
,
Bulle
,
J.
,
Vanderwielen
,
T.
, and
Arts
,
T.
,
2013
, “
Optimization of a u-Bend for Minimal Pressure Loss in Internal Cooling Channels—Part I: Numerical Method
,”
ASME J. Turbomach.
,
135
(
5
), p.
051015
.
20.
Goel
,
T.
,
Haftka
,
R. T.
,
Shyy
,
W.
, and
Queipo
,
N. V.
,
2007
, “
Ensemble of Surrogates
,”
Struct. Multidiscip. Optim.
,
33
(
3
), pp.
199
216
.
21.
Karakasis
,
M. K.
, and
Giannakoglou
,
K. C.
,
2006
, “
On the Use of Metamodel-Assisted, Multi-Objective Evolutionary Algorithms
,”
Eng. Optim.
,
38
(
8
), pp.
941
957
.
22.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution—A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
(
4
), pp.
341
359
.
23.
Madavan
,
N. K.
,
2002
, “
Multiobjective Optimization Using a Pareto Differential Evolution Approach
,” IEEE
Congress on Evolutionary Computation
(
CEC'02
), Honolulu, HI, May 12–17, pp.
1145
1150
.
24.
Deb
,
K.
,
Agrawal
,
S.
,
Pratap
,
A.
, and
Meyarivan
,
T.
,
2000
, “
A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II
,”
International Conference on Parallel Problem Solving From Nature
, pp.
849
858.
25.
Konak
,
A.
,
Coit
,
D. W.
, and
Smith
,
A. E.
,
2006
, “
Multi-Objective Optimization Using Genetic Algorithms: A Tutorial
,”
Reliab. Eng. Syst. Saf.
,
91
(
9
), pp.
992
1007
.
26.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.
27.
Liaw
,
A.
, and
Wiener
,
M.
,
2002
, “
Classification and Regression by RandomForest
,”
R News
,
2
(
3
), pp.
18
22
.https://www.r-project.org/doc/Rnews/Rnews_2002-3.pdf
28.
Kohavi
,
R.
,
1995
, “
A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection
,”
14th International Joint Conference on Artificial Intelligence
(
IJCAI
), Montreal, Quebec, Canada, Aug. 20–25, pp.
1137
1143
.http://ai.stanford.edu/~ronnyk/accEst.pdf
29.
Feurer
,
M.
,
Springenberg
,
J. T.
, and
Hutter
,
F.
,
2015
, “
Initializing Bayesian Hyperparameter Optimization Via Meta-Learning
,”
29th AAAI Conference on Artificial Intelligence (AAAI'15
), Austin, TX, Jan. 25–30, pp.
1128
1135
.
30.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
)Dec, pp.
455
492
.
31.
Brochu
,
E.
,
Cora
,
V. M.
, and
De Freitas
,
N.
,
2010
, “
A Tutorial on Bayesian Optimization of Expensive Cost Functions, With Application to Active User Modeling and Hierarchical Reinforcement Learning
,” e-print
arXiv:1012.2599
.https://arxiv.org/abs/1012.2599
32.
Saar-Tsechansky
,
M.
, and
Provost
,
F.
,
2007
, “
Handling Missing Values When Applying Classification Models
,”
J. Mach. Learn. Res.
,
8
, pp.
1623
1657
.http://jmlr.csail.mit.edu/papers/volume8/saar-tsechansky07a/saar-tsechansky07a.pdf
You do not currently have access to this content.