The role of gas-to-wall temperature ratio on bypass transition along a highly loaded turbine guide vane is investigated through time-resolved heat flux measurements for different flow conditions. The tests are conducted in the von Karman Institute (VKI) isentropic compression tube (CT-2) facility. High response thin films mounted on the vane (VKI LS89 airfoil) coupled with analog circuits are used for the heat flux measurements. The first detectable wall heat flux fluctuations denote the onset of transition which is also evaluated by both the heat transfer coefficient and the intermittency factor distributions along the suction side. The exit Mach number is kept constant during each test by means of a downstream sonic throat while the gas-to-wall temperature ratio is varied from 1.14 to 1.51 by changing the inlet gas temperature. Four test cases are considered for different exit Mach numbers (0.52 and 0.86) and freestream turbulence intensity levels (0.8% and 5.3%) while the isentropic exit chord Reynolds number is maintained at 106. In the present test campaign, the length and the evolution of the phenomenon indicate a measurable effect of the gas-to-wall temperature ratio for test cases with mild pressure gradients.

References

References
1.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(
4
), pp.
509
537
.
2.
Emmons
,
H. W.
,
1951
, “
The Laminar-Turbulent Transition in a Boundary-Layer—Part I
,”
J. Aeronaut. Sci.
,
18
(
7
), pp.
490
498
.
3.
Di Pasquale
,
D.
,
Rona
,
A.
, and
Garrett
,
S. J.
,
2009
, “
A Selective Review of Transition Modelling for CFD
,”
AIAA
Paper No. AIAA 2009-3812https://www2.le.ac.uk/departments/engineering/people/academic-staff/sjg50/2009-3812.pdf.
4.
Costantini
,
M.
,
Fey
,
U.
,
Henne
,
U.
, and
Klein
,
C.
,
2015
, “
Nonadiabatic Surface Effects on Transition Measurements Using Temperature-Sensitive Paints
,”
AIAA J.
,
53
(
5
), pp.
1172
1187
.
5.
Camci
,
C.
, and
Arts
,
T.
,
1990
, “
An Experimental Convective Heat Transfer Investigation Around a Film-Cooled Gas Turbine Blade
,”
ASME J. Turbomach.
,
112
(
3
), pp.
497
503
.
6.
Fontaneto
,
F.
,
2014
, “
Aero-Thermal Performance of a Film-Cooled High-Pressure Turbine Blade/Vane: A Test Case for Numerical Codes Validation
,” Ph.D. dissertation, von Karman Institute & Universitá degli Studi di Bergamo, Rhode-Saint-Genèse, Belgium.
7.
Liepmann
,
H. W.
, and
Fila
,
G. H.
,
1947
, “
Investigations of Effects of Surface Temperature and Single Roughness Elements on Boundary-Layer Transition
,” NACA, Washington, DC, Report No.
NACA-890
.https://authors.library.caltech.edu/448/1/LIEnacarpt890.pdf
8.
Schlichting
,
H.
, and
Gersten
,
K.
,
2000
,
Boundary Layer Theory
,
Springer
,
Berlin, Germany
.
9.
Rued
,
K.
, and
Wittig
,
S.
,
1986
, “
Laminar and Transitional Boundary Layer Structures in Accelerating Flow With Heat Transfer
,”
ASME J. Turbomach.
,
108
(
1
), pp.
116
123
.
10.
Abu-Ghannam
,
B. J.
, and
Shaw
,
R.
,
1980
, “
Natural Transition of Boundary Layers—The Effects of Turbulence, Pressure Gradient and Flow History
,”
J. Mech. Eng. Sci.
,
22
(
5
), pp.
213
228
.
11.
Suzen
,
Y. B.
,
Xiong
,
G.
, and
Huang
,
P. G.
,
2002
, “
Predictions of Transitional Flows in Low-Pressure Turbines Using Intermittency Transport Equation
,”
AIAA J.
,
40
(
2
), pp.
254
266
.
12.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modelling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.
13.
van Driest
,
E. R.
, and
Blumer
,
C. B.
,
1963
, “
Boundary Layer Transition: Freestream Turbulence and Pressure Gradient Effects
,”
AIAA J.
,
1
(
6
), pp.
1303
1306
.
14.
Kubacki
,
S.
, and
Dick
,
E.
,
2016
, “
An Algebraic Model for Bypass Transition in Turbomachinery Boundary Layer Flows
,”
Int. J. Heat Fluid Flow
,
58
, pp.
68
83
.
15.
Straka
,
P.
, and
Příhoda
,
J.
,
2012
, “
Modelling of the Bypass-Transition in the Linear Turbine Blade Cascade
,” Sixth European Congress on Computational Methods in Applied Sciences and Engineering (
ECOMAS
), Vienna, Austria, Sept. 10–14, pp. 3711–3725.http://eccomas.cimne.com/cvdata/cntr1/spc7/dtos/img/mdia/ECCOMAS-2012-e-book-Title-Content.pdf
16.
Fürst
,
J.
,
Příhoda
,
J.
, and
Straka
,
P.
,
2013
, “
Numerical Simulation of Transitional Flows
,”
Computing
,
95
(
Suppl. 1
), pp.
163
182
.
17.
Dick
,
E.
, and
Kubacki
,
S.
,
2017
, “
Transition Models for Turbomachinery Boundary Layer Flows: A Review
,”
Int. J. Turbomach. Power
,
2
(
2
), p.
4
.
18.
Sharma
,
O. P.
,
1987
, “
Momentum and Thermal Boundary Layers on Turbine Airfoil Suction
,”
AIAA/SAE/ASME/ASEE
23rd Joint Propulsion Conference
, San Diego, CA, June 29–July 2.
19.
Kays
,
W. M.
,
1994
, “
Turbulent Prandtl Number—Where Are We?
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
284
295
.
20.
Arts
,
T.
, and
Lambert de Rouvroit
,
M.
,
1992
, “
Aero-Thermal Performance of a Two Dimensional Highly Loaded Transonic Turbine Nozzle Guide Vane: A Test Case for Inviscid and Viscous Flow Computations
,”
ASME J. Turbomach.
,
114
(
1
), pp.
147
154
.
21.
Schultz
,
D.
,
Jones
,
T.
,
Oldfield
,
M.
, and
Daniels
,
L.
,
1978
, “
A New Transient Cascade Facility for the Measurement of Heat Transfer Rates
,”
High Temperature Problems in Gas Turbine Engines, AGARD Conference Proceedings No. 229
, p. 31.
22.
Cação Ferreira
,
T. S.
, and
Arts
,
T.
,
2017
, “
Influence of Gas-to-Wall Temperature Ratio on By-Pass Transition
,”
ASME
Paper No. GT2017-63524
.
23.
Ligrani
,
P. M.
,
Camci
,
C.
, and
Grady
,
M. S.
,
1982
, “
Thin Film Heat Transfer Gage Construction and Measurement Details
,” von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse, Belgium, Internal Note No. 72.
24.
Camci
,
C.
,
1985
, “
Experimental and Theoretical Study of Film Cooling on a Gas Turbine Blade
,” Ph.D. dissertation, von Karman Institute & Katholieke Universiteit Leuven, Rhode-Saint-Genèse, Belgium.
25.
Schultz
,
D. L.
, and
Jones
,
T. V.
,
1973
, “
Heat-Transfer Measurements in Short-Duration Hypersonic Facilities
,” University of Oxford, Oxford, UK, AGARDograph No. 165.
26.
Oldfield
,
M. L. G.
,
Jones
,
T. V.
, and
Schultz
,
D. L.
,
1978
, “
Online Computer for Transient Turbine Cascade Instrumentation
,”
IEEE Trans. Aerosp. Electron. Syst.
,
14
(
5
), pp.
738
749
.
27.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
28.
Solomon
,
W. J.
,
1996
, “
Unsteady Boundary Layer Transition on Axial Compressor Blades
,”
Ph.D. dissertation
, University of Tasmania, Hobart, Australia.https://core.ac.uk/download/pdf/33334009.pdf
29.
Canepa
,
E.
,
Ubaldi
,
M.
, and
Zunino
,
P.
,
2002
, “
Experiences in the Application of Intermittency Detection Techniques to Hot-Film Signals in Transitional Boundary Layers
,”
16th Symposium on Measuring Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines
, Cambridge, UK, Sept. 23–24, p. 3.
30.
Rubini
,
R.
,
2017
, “
Numerical Study of the Effect of the Gas to Wall Temperature Ratio on the Bypass Transition
,” von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse, Belgium, Project Report No. 2017-21.
31.
Gourdain
,
N.
,
Gicquel
,
Y. M.
, and
Collado
,
E.
,
2012
, “
Comparison of RANS Simulation and LES for the Prediction of Heat Transfer in a Highly Loaded Turbine Guide Vane
,”
J. Propul. Power
,
28
(
2
), pp.
423
433
.
32.
Daniels
,
L. D.
, and
Browne
,
W. B.
,
1981
, “
Calculation of Heat Transfer Rates to Gas Turbine Blades
,”
Int. J. Heat Mass Transfer
,
24
(
5
), pp.
871
879
.
33.
Cutrone
,
L.
,
De Palma
,
P.
,
Pascazio
,
G.
, and
Napolitano
,
M.
,
2007
, “
An Evaluation of Bypass Transition Models for Turbomachinery Flows
,”
Int. J. Heat Fluid Flow
,
28
(
1
), pp.
161
177
.
You do not currently have access to this content.