In the present paper, the influence of inlet flow incidence on the aerodynamic and thermal performance of a film cooled linear nozzle vane cascade is fully assessed. Tests have been carried out on a solid and a cooled cascade. In the cooled cascade, coolant is ejected at the end wall through a slot located upstream of the leading edge plane. Moreover, a vane showerhead cooling system is also realized through four rows of cylindrical holes. The cascade was tested at a high inlet turbulence intensity level (Tu1 = 9%) and at a constant inlet Mach number of 0.12 and nominal cooling condition, varying the inlet flow angle in the range ±20 deg. The aero-thermal characterization of vane platform was obtained through five-hole probe and end wall adiabatic film cooling effectiveness measurements. Vane load distributions and surface flow visualizations supported the discussion of the results. A relevant negative impact of positive inlet flow incidence on the cooled cascade aerodynamic and thermal performance was detected. A negligible influence was instead observed at negative incidence, even at the lowest tested value of −20 deg.

References

References
1.
Syred
,
N.
, and
Khalatov
,
A.
,
2006
,
Advanced Combustion and Aerothermal Technologies
,
Springer
, Dordrecht, The Netherlands.
2.
Dunn-Rankin
,
D.
, and
Therkelsen
,
P.
,
2016
,
Lean Combustion Technology and Control
,
2nd ed.
,
Academic Press
, Cambridge, MA.
3.
Turrell
,
M. D.
,
Stopford
,
P. J.
,
Syed
,
K. J.
, and
Buchanan
,
E.
,
2004
, “
CFD Simulation of the Flow Within and Downstream of a High-Swirl Lean Premixed Gas Turbine Combustor
,”
ASME
Paper No. GT2004-53112.
4.
Insinna
,
M.
,
Griffini
,
D.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2014
, “
Conjugate Heat Transfer Analysis of a Film Cooled High-Pressure Turbine Vane Under Realistic Combustor Exit Flow Conditions
,”
ASME
Paper No. GT2014-25280.
5.
Insinna
,
M.
,
Griffini
,
D.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2015
, “
Effects of Realistic Inflow Conditions on the Aero-Thermal Performance of a Film-Cooled Vane
,”
11th European Turbomachinery Conference (ETC11)
, Madrid, Spain, Mar. 23–27, Paper No.
ETC2015-095
.https://www.researchgate.net/publication/272442918_Effects_of_Realistic_Inflow_Conditions_on_the_Aero-Thermal_Performance_of_a_Film-Cooled_Vane
6.
Griffini
,
D.
,
Insinna
,
M.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2016
, “
Clocking Effects of Inlet Nonuniformities in a Fully Cooled High-Pressure Vane: A Conjugate Heat Transfer Analysis
,”
ASME J. Turbomach.
,
138
(
2
), p.
021006
.
7.
Yin
,
H.
,
Qin
,
Y.
,
Ren
,
J.
, and
Jiang
,
H.
,
2013
, “
Effect of Inlet Swirl on the Model Leading Edge of Turbine Vane
,”
ASME
Paper No. GT2013-94471.
8.
Yin
,
H.
,
Liu
,
S.
,
Feng
,
Y.
,
Li
,
M.
,
Ren
,
J.
, and
Jiang
,
H.
,
2015
, “
Experimental Test Rig for Combustor-Turbine Interaction Research and Test Results Analysis
,”
ASME
Paper No. GT2015-42209.
9.
Qureshi
,
I.
,
Smith
,
A. D.
, and
Povey
,
T.
,
2013
, “
HP Vane Aerodynamics and Heat Transfer in the Presence of Aggressive Inlet Swirl
,”
ASME J. Turbomach.
,
135
(
2
), p.
021040
.
10.
Jacobi
,
S.
, and
Rosic
,
B.
,
2017
, “
Influence of Combustor Flow With Swirl on Integrated Combustor Vane Concept Full-Stage Performance
,”
ASME
Paper No. GT2017-63785.
11.
Giller
,
L.
, and
Schiffer
,
H. P.
,
2012
, “
Interactions Between the Combustor Swirl and the High Pressure Stator of a Turbine
,”
ASME
Paper No. GT2012-69157.
12.
Schmid
,
G.
, and
Schiffer
,
H. P.
,
2012
, “
Numerical Investigation of Inlet Swirl in a Turbine Cascade
,”
ASME
Paper No. GT2012-69397.
13.
Schmid
,
G.
,
Krichbaum
,
A.
,
Werschnik
,
H.
, and
Schiffer
,
H. P.
,
2014
, “
The Impact of Realistic Inlet Swirl in a 1 ½ Stage Axial Turbine
,”
ASME
Paper No. GT2014-26716.
14.
Werschnik
,
H.
,
Hilgert
,
J.
,
Bruschewski
,
M.
, and
Schiffer
,
H. P.
,
2016
, “
Combustor-Turbine Aerothermal Interaction in an Axial Turbine: Influence of Varied Inflow Conditions on Endwall Heat Transfer and Film Cooling Effectiveness
,”
ASME
Paper No. GT2016-57171.
15.
Hilgert
,
J.
,
Bruschewski
,
Werschnik
,
H. M.
, and
Schiffer
,
H. P.
,
2017
, “
Numerical Studies on Combustor-Turbine Interaction at the Large Scale Turbine Rig (LSTR)
,”
ASME
Paper No. GT2017-64504.
16.
Werschnik
,
H.
,
Schneider
,
M.
,
Herrmann
,
J.
,
Ivanov
,
D.
,
Schiffer
,
H. P.
, and
Lyko
,
C.
,
2017
, “
The Influence of Combustor Swirl on Pressure Losses and the Propagation of Coolant Flows at the Large Scale Turbine Rig (LSTR): Experimental and Numerical Investigation
,”
Int. J. Turbomach. Propuls. Power
,
2
(
3
), p.
12
.
17.
Shahpar
,
S.
, and
Caloni
,
S.
,
2012
, “
Aerodynamic Optimization of High Pressure Turbines for Lean-Burn Combustion System
,”
ASME
Paper No. GT2012-69228.
18.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
248
257
.
19.
Perdichizzi
,
A.
, and
Dossena
,
V.
,
1993
, “
Incidence Angle and Pitch-Chord Effects on Secondary Flows Downstream of a Turbine Cascade
,”
ASME J. Turbomach.
,
115
, pp.
383
391
.
20.
Dossena
,
V.
,
D'Ippolito
,
G.
, and
Pesatori
,
E.
,
2004
, “
Stagger Angle and Pitch-Chord Ratio Effects on Secondary Flows Downstream of a Turbine Cascade at Several Off-Design Conditions
,”
ASME
Paper No. GT2004-54083.
21.
Tsujita
,
H.
, and
Yamamoto
,
A.
,
2014
, “
Influences of Incidence Angle on 2D-Flow and Secondary Flow Structure in Ultra-Highly Loaded Turbine Cascade
,”
J. Therm. Sci.
,
23
, pp.
13
21
.
22.
Camci
,
G.
, and
Arts
,
T.
,
1991
, “
Effect of Incidence on Wall Heating Rates and Aerodynamics on a Film Cooled Transonic Turbine Cascade
,”
ASME J. Turbomach.
,
113
, pp.
493
502
.
23.
Kunze
,
M.
,
Vogeler
,
K.
,
Crawford
,
M.
, and
Brown
,
G.
,
2014
, “
Single and Multiple Row Endwall Film-Cooling of a Highly Loaded First Turbine Vane With Variation of Loading
,”
ASME J. Turbomach.
,
136
(
6
), p.
061012
.
24.
Craig
,
H. R. M.
, and
Cox
,
H. J. A.
,
1971
, “
Performance Estimation of Axial Flow Turbines
,”
Proc. Inst. Mech. Eng.
,
187
, pp.
32
71
.
25.
Barigozzi
,
G.
,
Perdichizzi
,
A.
,
Henze
,
M.
, and
Krueckels
,
J.
,
2015
, “
Aerodynamic and Heat Transfer Characterization of a Nozzle Vane Cascade With and Without Platform Cooling
,”
ASME
Paper No. GT2015-42845.
26.
Barigozzi
,
G.
,
Mosconi
,
S.
,
Perdichizzi
,
A.
, and
Ravelli
,
S.
,
2017
, “
The Effect of Hot Streaks on a High Pressure Turbine Vane Cascade With Showerhead Film Cooling
,”
Int. J. Turbomach. Propuls. Power
,
2
(3), pp.
1
15
.
27.
Perdichizzi
,
A.
,
Abdeh
,
H.
,
Barigozzi
,
G.
,
Henze
,
M.
, and
Krueckels
,
J.
,
2017
, “
Aero-Thermal Performance of a Nozzle Vane Cascade With a Generic Non Uniform Inlet Flow Condition—Part I: Influence of Nonuniformity Location
,”
ASME J. Turbomach.
,
139
(
3
), p.
031002
.
28.
Barigozzi
,
G.
,
Abdeh
,
H.
,
Perdichizzi
,
A.
,
Henze
,
M.
, and
Krueckels
,
2017
, “
Aero-Thermal Performance of a Nozzle Vane Cascade With a Generic Non Uniform Inlet Flow Condition—Part II: Influence of Purge and Film Cooling Injection
,”
ASME J. Turbomach.
,
139
(
10
), p.
101004
.
29.
Barigozzi
,
G.
,
Ravelli
,
S.
,
Abdeh
,
H.
,
Perdichizzi
,
A.
,
Henze
,
M.
, and
Krueckels
,
J.
,
2017
, “
Heat Transfer Analysis Over a Film Cooled Platform of a Vane Cascade With a Non Uniform Inlet Flow
,”
ASME
Paper No. GT2017-64266.
30.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
,
1988
, “
Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
1
8
.
31.
Barigozzi
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
,
2007
, “
The Effect of an Upstream Ramp on Cylindrical and Fan-Shaped Hole Film Cooling—Part II: Adiabatic Effectiveness Results
,”
ASME
Paper No. GT2007-27079.
32.
Camci
,
C.
,
Kim
,
K.
, and
Hippensteele
,
S. A.
,
1992
, “
A New Hue Capturing Technique for the Quantitative Interpretation of Liquid Crystal Images Used in Convective Heat Transfer Studies
,”
ASME J. Turbomach.
,
114
(
4
), pp.
765
775
.
33.
Chavez
,
K. F.
,
Packard
,
G. R.
,
Slavens
,
T. N.
, and
Bogard
,
D. G.
,
2016
, “
Experimentally Determined External Heat Transfer Coefficient of a New Turbine Airfoil Design at Varying Incidence Angles
,” International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (
ISROMAC
), Honolulu, HI, Apr. 10–15, pp. 1–9.http://isromac-isimet.univ-lille1.fr/upload_dir/finalpaper/390.finalpaper.pdf
You do not currently have access to this content.