In low-pressure turbines (LPT) at design point, around 60–70% of losses are generated in the blade boundary layers far from end walls, while the remaining 30–40% is controlled by the interaction of the blade profile with the end-wall boundary layer. Increasing attention is devoted to these flow regions in industrial design processes. This paper discusses the end-wall flow characteristics of the T106 profile with parallel end walls at realistic LPT conditions, as described in the experimental setup of Duden, A., and Fottner, L., 1997, “Influence of Taper, Reynolds Number and Mach Number on the Secondary Flow Field of a Highly Loaded Turbine Cascade,” Proc. Inst. Mech. Eng., Part A, 211(4), pp.309–320. Calculations are carried out by both Reynolds-averaged Navier–Stokes (RANS), due to its continuing role as the design verification workhorse, and highly resolved large eddy simulation (LES). Part II of this paper focuses on the loss generation associated with the secondary end-wall vortices. Entropy generation and the consequent stagnation pressure losses are analyzed following the aerodynamic investigation carried out in the companion paper (GT2018-76233). The ability of classical turbulence models generally used in RANS to discern the loss contributions of the different vortical structures is discussed in detail and the attainable degree of accuracy is scrutinized with the help of LES and the available test data. The purpose is to identify the flow features that require further modeling efforts in order to improve RANS/unsteady RANS (URANS) approaches and make them able to support the design of the next generation of LPTs.

References

1.
Popović
,
I.
, and
Hodson
,
H. P.
,
2013
, “
Aerothermal Impact of the Interaction Between Hub Leakage and Mainstream Flows in Highly-Loaded High Pressure Turbine Blades
,”
ASME J. Turbomach.
,
135
(
6
), p.
061014
.
2.
Hodson
,
H. P.
, and
Dominy
,
R. G.
,
1987
, “
Three-Dimensional Flow in a Low-Pressure Turbine Cascade at Its Design Condition
,”
ASME J. Turbomach.
,
109
(
2
), pp.
177
185
.
3.
Hodson
,
H. P.
, and
Dominy
,
R. G.
,
1987
, “
The Off-Design Performance of a Low-Pressure Turbine Cascade
,”
ASME J. Turbomach.
,
109
(
2
), pp.
201
209
.
4.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
,
1988
, “
Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
1
8
.
5.
Walsh
,
J. A.
, and
Gregory-Smith
,
D. G.
,
1990
, “
Inlet Skew and the Growth of Secondary Losses and Vorticity in a Turbine Cascade
,”
ASME J. Turbomach.
,
112
(
4
), pp.
633
642
.
6.
Gregory-Smith
,
D. G.
, and
Cleak
,
J. G. E.
,
1992
, “
Secondary Flow Measurements in a Turbine Cascade With High Inlet Turbulence
,”
ASME J. Turbomach.
,
114
(
1
), pp.
173
183
.
7.
Infantino
,
D.
,
Satta
,
F.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2015
, “
Phase-Locked Investigation of Secondary Flows Perturbed by Passing Wakes in a High-Lift LPT Turbine Cascade
,”
ASME
Paper No. GT2015-42480
.
8.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
248
257
.
9.
Langston
,
L. S.
,
2001
, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N. Y. Acad. Sci.
,
934
, pp.
11
26
.
10.
Michelassi
,
V.
,
Chen
,
L.-W.
,
Pichler
,
R.
,
Sandberg
,
R. D.
, and
Bhaskaran
,
R.
,
2016
, “
High-Fidelity Simulations of Low-Pressure Turbines: Effect of Flow Coefficient and Reduced Frequency on Losses
,”
ASME J. Turbomach.
,
138
(
11
), p.
111006
.
11.
Pacciani
,
R.
,
Marconcini
,
M.
,
Fadai-Ghotbi
,
A.
,
Lardeau
,
S.
, and
Leschziner
,
M. A.
,
2011
, “
Calculation of High-Lift Cascades in Low Pressure Turbine Conditions Using a Three-Equation Model
,”
ASME J. Turbomach.
,
133
(
3
), p.
031016
.
12.
Pacciani
,
R.
,
Marconcini
,
M.
,
Arnone
,
A.
, and
Bertini
,
F.
,
2013
, “
Predicting High-Lift LP Turbine Cascades Flows Using Transition-Sensitive Turbulence Closures
,”
ASME J. Turbomach.
,
136
(
5
), p.
051007
.
13.
Koschichow
,
D.
,
Froehlich
,
J.
,
Kirik
,
I.
, and
Niehuis
,
R.
,
2014
, “
DNS of the Flow Near the Endwall in a Linear Low Pressure Turbine Cascade With Periodically Passing Wakes
,”
ASME
Paper No. GT2014-25071
.
14.
Cui
,
J.
,
Nagabhushana
,
R.
, and
Tucker
,
P. G.
,
2017
, “
Numerical Investigation of Secondary Flows in a High-Lift Low Pressure Turbine
,”
Int. J. Heat Fluid Flow
,
63
, pp.
149
157
.
15.
Denton
,
J.
, and
Pullan
,
G. P.
,
2012
, “
A Numerical Investigation Into the Sources of Endwall Loss in Axial Flow Turbines
,”
ASME
Paper No. GT2012-69173
.
16.
Pullan
,
G. P.
,
Denton
,
J. D.
, and
Dunkley
,
M.
,
2003
, “
An Experimental and Computational Study of the Formation of a Streamwise Shed Vortex in a Turbine Stage
,”
ASME J. Turbomach.
,
125
(
2
), pp.
291
297
.
17.
Duden
,
A.
, and
Fottner
,
L.
,
1997
, “
Influence of Taper, Reynolds Number and Mach Number on the Secondary Flow Field of a Highly Loaded Turbine Cascade
,”
Proc. Inst. Mech. Eng., Part A
,
211
(
4
), pp.
309
320
.
18.
Sandberg
,
R.
,
Tan
,
R.
,
Weatheritt
,
J.
,
Ooi
,
R.
,
Haghiri
,
A.
,
Michelassi
,
V.
, and
Laskowski
,
G.
,
2018
, “
Applying Machine Learnt Explicit Algebraic Stress and Scalar Flux Models to a Fundamental Trailing Edge Slot
,”
ASME
Paper No. GT2018-75444
.
19.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.
20.
Pichler
,
R.
,
Zhao
,
Y.
,
Sandberg
,
R. D.
,
Michelassi
,
V.
,
Pacciani
,
R.
,
Marconcini
,
M.
, and
Arnone
,
A.
,
2018
, “
LES and RANS Analysis of the End-Wall Flow in a Linear LPT Cascade—Part I: Flow and Secondary Vorticity Fields Under Varying Inlet Condition
,”
ASME
Paper No. GT2018-76233
.
21.
Ciorciari
,
R.
,
Kirik
,
I.
, and
Niehuis
,
R.
,
2014
, “
Effects of Unsteady Wakes on the Secondary Flows in the Linear T106 Turbine Cascade
,”
ASME J. Turbomach.
,
136
(
9
), p.
091010
.
22.
Arnone
,
A.
,
1994
, “
Viscous Analysis of Three–Dimensional Rotor Flow Using a Multigrid Method
,”
ASME J. Turbomach.
,
116
(
3
), pp.
435
445
.
23.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
, 2nd ed.,
DCW Industries
,
La Cañada, CA
.
24.
Marconcini
,
M.
,
Pacciani
,
R.
, and
Arnone
,
A.
,
2015
, “
Transition Modelling Implications in the CFD Analysis of a Turbine Nozzle Vane Cascade Tested Over a Range of Mach and Reynolds Numbers
,”
J. Therm. Sci.
,
24
(
6
), pp.
526
534
.
25.
Sandberg
,
R. D.
,
Michelassi
,
V.
,
Pichler
,
R.
,
Chen
,
L.-W.
, and
Hohnston
,
R.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part I: Methodology
,”
ASME J. Turbomach.
,
137
(
5
), p.
051011
.
26.
Pichler
,
R.
,
Sandberg
,
R. D.
, and
Michelassi
,
V.
,
2016
, “
Assessment of Grid Resolution Requirements for Accurate Simulation of Disparate Scales of Turbulent Flow in Low-Pressure Turbines
,”
ASME
Paper No. GT2016-56858
.
27.
Stieger
,
R. D.
, and
Hodson
,
H. P.
,
2004
, “
The Transition Mechanism of Highly Loaded Low-Pressure Turbine Blades
,”
ASME J. Turbomach.
,
126
(
4
), pp.
536
543
.
28.
Howell
,
R. J.
,
Ramesh
,
O. N.
,
Hodson
,
H. P.
,
Harvey
,
N. W.
, and
Schulte
,
V.
,
2001
, “
High Lift and Aft-Loaded Profiles for Low-Pressure Turbines
,”
ASME J. Turbomach.
,
123
(
2
), pp.
181
188
.
29.
Praisner
,
T. J.
,
Clark
,
J. P.
,
Nash
,
T. C.
,
Rice
,
M. J.
, and
Grover
,
E. A.
,
2006
, “
Performance Impacts Due to Wake Mixing in Axial-Flow Turbomachinery
,”
ASME
Paper No. GT2006-90666
.
30.
Michelassi
,
V.
,
Chen
,
L.-W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part II: Effect of Inflow Disturbances
,”
ASME J. Turbomach.
,
137
(
7
), p.
071005
.
31.
Pichler
,
R.
,
Michelassi
,
V.
,
Sandberg
,
R. D.
, and
Ong
,
J.
,
2017
, “
Highly Resolved LES Study of Gap Size Effect on Low-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
140
(
2
), p.
021003
.
You do not currently have access to this content.