A passive shock wave control method, using a grooved surface instead of the original smooth surface of a gas turbine nozzle vane to alter a single shock wave into a multiple shock wave structure, is investigated in this paper, so as to gain insight into the flow characteristics of a multiple shock wave system and its variations with various grooved surface geometry parameters. With the combination of numerical and experimental approaches, the shock wave structure and the flow behavior in a linear turbine nozzle channel with different grooved surface configurations were compared and analyzed in details. The numerical and experimental results indicate that the multiple shock wave structure induced by the grooved surface is beneficial for mitigating the intensity of the shock wave, reducing the potential excitation force of the shock wave and decreasing the shock wave loss as well. It was also found that the benefits are related to the geometry of the grooved surface, such as groove width, depth, and number. However, the presence of the grooved surface inevitably causes more viscous boundary layer loss and wake loss, which maybe a bottleneck for general engineering application of such a passive shock wave mitigation method.

References

References
1.
Fu
,
L.
,
Feng
,
Z.
, and
Li
,
G.
,
2017
, “
Experimental Investigation on Overall Performance of a Millimeter-Scale Radial Turbine for Micro Gas Turbine
,”
Energy
,
134
, pp.
1
9
.
2.
Kim
,
M. J.
,
Kim
,
J. H.
, and
Kim
,
T. S.
,
2018
, “
The Effects of Internal Leakage on the Performance of a Micro Gas Turbine
,”
Appl. Energy
,
212
, pp.
175
184
.
3.
Behar
,
O.
,
2017
, “
A Novel Hybrid Solar Preheating Gas Turbine
,”
Energy Convers. Manage.
,
158
, pp.
120
132
.
4.
Wu
,
H.-Y.
, and
Pan
,
K.
,
2018
, “
Optimum Design and Simulation of a Radial Inflow Turbine for Geothermal Power Generation
,”
Appl. Therm. Eng.
,
130
, pp.
1299
1309
.
5.
Serrano
,
J. R.
,
Navarro
,
R.
,
Garcia-Cuevas
,
L. M.
, and
Inhestern
,
L. B.
,
2018
, “
Turbocharger Turbine Rotor Tip Leakage Loss and Mass Flow Model Valid Up to Extreme Off-Design Conditions With High Blade to Jet Speed Ratio
,”
Energy
,
147
, pp.
1299
1310
.
6.
Zhao
,
R.
,
Li
,
W.
,
Zhuge
,
W.
,
Zhang
,
Y.
,
Yin
,
Y.
, and
Wu
,
Y.
,
2018
, “
Characterization of Two Stage Turbine System Under Steady and Pulsating Flow Conditions
,”
Energy
,
148
, pp.
407
423
.
7.
Denton
,
J. D.
, and
Xu
,
L.
,
1989
, “
The Trailing Edge Loss of Transonic Turbine Blades
,”
ASME
Paper No. 89-GT-278.
8.
Wu
,
Z.
,
Xu
,
Y.
,
Wang
,
W.
, and
Hu
,
R.
,
2013
, “
Review of Shock Wave Detection Method in CFD Post-Processing
,”
Chin. J. Aeronaut.
,
26
(
3
), pp.
501
513
.
9.
Hou
,
W. T.
,
Qiao
,
W. Y.
, and
Luo
,
H. L.
,
2011
, “
Shock-Wave/Boundary-Layer Interaction in a Transonic Turbine Cascade
,”
Proc. Inst. Mech. Eng., Part G
,
225
(
1
), pp.
77
85
.
10.
Doorly
,
D. J.
, and
Oldfield
,
M. L. G.
,
1985
, “
Simulation of the Effects of Shock Wave Passing on a Turbine Rotor Blade
,”
ASME J. Eng. Gas Turbines Power
,
107
(
4
), pp.
998
1006
.
11.
Zhang
,
C. X. Z.
, and
Hassan
,
I. G.
,
2009
, “
Computational Study of the Effects of Shock Waves on Film Cooling Effectiveness
,”
ASME
Paper No. GT2009-59279.
12.
Sato
,
W.
,
Yamagata
,
A.
, and
Hattori
,
H.
,
2014
, “
A Study on Unsteady Aerodynamic Excitation Forces on Radial Turbine Blade Due to Rotor-Stator Interaction
,”
11th International Conference on Turbochargers and Turbocharging
, London, May 13–14, pp.
389
398
.
13.
Mazaheri
,
K.
, and
Khatibirad
,
S.
,
2017
, “
Using a Shock Control Bump to Improve the Performance of an Axial Compressor Blade Section
,”
Shock Waves
,
27
(
2
), pp.
299
312
.
14.
Lo
,
K. H.
, and
Kontis
,
K.
,
2017
, “
Flow Visualisation of a Normal Shock Impinging Over a Rounded Contour Bump in a Mach 1.3 Free-Stream
,”
J. Visualization
,
20
(
2
), pp.
237
249
.
15.
Bruce
,
P. J. K.
, and
Colliss
,
S. P.
,
2015
, “
Review of Research Into Shock Control Bumps
,”
Shock Waves
,
25
(
5
), pp.
451
481
.
16.
Zhu
,
Y.
, and
Jiang
,
P.
,
2014
, “
Experimental and Numerical Investigation of the Effect of Shock Wave Characteristics on the Ejector Performance
,”
Int. J. Refrig.
,
40
, pp.
31
42
.
17.
Giovannini
,
M.
,
Marconcini
,
M.
,
Arnone
,
A.
, and
Bertini
,
F.
,
2014
, “
Evaluation of Unsteady Computational Fluid Dynamics Models Applied to the Analysis of a Transonic High-Pressure Turbine Stage
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
7
), pp.
813
824
.
18.
Zhao
,
W.
,
Luo
,
W.
,
Zhao
,
Q.
, and
Xu
,
J.
,
2016
, “
Investigation on the Reduction of Trailing Edge Shock Losses for a Highly Loaded Transonic Turbine
,”
ASME
Paper No. GT2016-56131.
19.
Zhao
,
B.
,
Hu
,
L.
,
Sun
,
H.
,
Yang
,
C.
,
Shi
,
X.
,
Yi
,
J.
,
Curtis
,
E.
, and
Engeda
,
A.
,
2016
, “
Numerical Investigation of a Novel Approach for Mitigation of Forced Response of a Variable Geometry Turbine During Exhaust Braking Mode
,”
ASME
Paper No. GT2016-56342.
20.
Lei
,
X.
,
Qi
,
M.
,
Sun
,
H.
, and
Hu
,
L.
,
2017
, “
Investigation on the Shock Control Using Grooved Surface in a Linear Turbine
,”
ASME J. Turbomach.
,
139
(
12
), p.
121008
.
21.
Lei
,
X.
,
Qi
,
M.
,
Sun
,
H.
,
Shi
,
X.
, and
Hu
,
L.
,
2017
, “
Study on the Interaction of Clearance Flow and Shock Wave in a Turbine Nozzle
,”
SAE
Paper No. 2017-01-1039.https://doi.org/10.4271/2017-01-1039
22.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.
23.
Tanaka
,
M.
,
Matsuo
,
S.
,
Setoguchi
,
T.
,
Kaneko
,
K.
,
Kim
,
H.-D.
, and
Yu
,
S.
,
2003
, “
Passive Control of Transonic Flow Fields With Shock Wave Using Non-Equilibrium Condensation and Porous Wall
,”
J. Therm. Sci.
,
12
(
2
), pp.
126
131
.
24.
Zhao
,
B.
,
Sun
,
H.
,
Shi
,
X.
,
Qi
,
M.
, and
Guo
,
S.
, “
Investigation of Using Multi-Shockwave System instead of Single Normal Shock for Improving Radial Inflow Turbine Reliability
,”
Int. J. Heat Fluid Flow
,
71
, pp.
170
178
.
You do not currently have access to this content.