Internal coolant passages of gas turbine vanes and blades have various orientations relative to the external hot gas flow. As a consequence, the inflow of film cooling holes varies as well. To further identify the influencing parameters of film cooling under varying inflow conditions, the present paper provides detailed experimental data. The generic study is performed in a novel test rig, which enables compliance with all relevant similarity parameters including density ratio. Film cooling effectiveness as well as heat transfer of a 10–10–10 deg laidback fan-shaped cooling hole is discussed. Data are processed and presented over 50 hole diameters downstream of the cooling hole exit. First, the parallel coolant flow setup is discussed. Subsequently, it is compared to a perpendicular coolant flow setup at a moderate coolant channel Reynolds number. For the perpendicular coolant flow, asymmetric flow separation in the diffuser occurs and leads to a reduction of film cooling effectiveness. For a higher coolant channel Reynolds number and perpendicular coolant flow, asymmetry increases and cooling effectiveness is further decreased. An increase in blowing ratio does not lead to a significant increase in cooling effectiveness. For all cases investigated, heat transfer augmentation due to film cooling is observed. Heat transfer is highest in the near-hole region and decreases further downstream. Results prove that coolant flow orientation has a severe impact on both parameters.

References

References
1.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2014
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
ASME
Paper No. GT2014-25992.
2.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Free-Stream Turbulence Effects on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
,
125
(
1
), pp.
65
73
.
3.
Anderson
,
J. B.
,
Wilkes
,
E. K.
,
McClintic
,
J. W.
, and
Bogard
,
D. G.
,
2016
, “
Effects of Freestream Mach Number, Reynolds Number, and Boundary Layer Thickness on Film Cooling Effectiveness of Shaped Holes
,”
ASME
Paper No. GT2016-56152.
4.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
.
5.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
,
1996
, “
Effects of Surface Roughness on Film Cooling
,”
ASME
Paper No. 96-GT-299.
6.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
7.
Fraas
,
M.
,
Glasenapp
,
T.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2017
, “
Introducing a New Test Rig for Film Cooling Measurements With Realistic Hole Inflow Conditions
,”
ASME
Paper No. GT2017-63585.
8.
Leylek
,
J. H.
, and
Zerkle
,
R. D.
,
1994
, “
Discrete-Jet Film Cooling: A Comparison of Computational Results With Experiments
,”
ASME J. Turbomach.
,
116
(
3
), pp.
358
368
.
9.
Acharya
,
S.
, and
Houston Leedom
,
D.
,
2013
, “
Large Eddy Simulations of Discrete Hole Film Cooling With Plenum Inflow Orientation Effects
,”
ASME J. Heat Transfer
,
135
(
1
), p.
011010
.
10.
Thole
,
K. A.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1997
, “
Effect of a Crossflow at the Entrance to a Film-Cooling Hole
,”
ASME J. Fluids Eng.
,
119
(
3
), pp.
533
540
.
11.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
549
556
.
12.
Saumweber
,
C.
,
Schulz
,
A.
,
Wittig
,
S.
, and
Gritsch
,
M.
,
2001
, “
Effects of Entrance Crossflow Directions to Film Cooling Holes
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
401
408
.
13.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Heat Transfer Coefficient Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME
Paper No. 98-GT-028.
14.
Kohli
,
A.
, and
Thole
,
K. A.
,
1998
, “
Entrance Effects on Diffused Film-Cooling Holes
,”
ASME
Paper No. 98-GT-402.
15.
Saumweber
,
C.
, and
Schulz
,
A.
,
2008
, “
Comparison the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes With Special Emphasis on the Effect of Internal Coolant Cross-Flow
,”
ASME
Paper No. GT2008-51036.
16.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Effect of Internal Coolant Crossflow on the Effectiveness of Shaped Film-Cooling Holes
,”
ASME J. Turbomach.
,
125
(
3
), pp.
547
554
.
17.
McClintic
,
J. W.
,
Klavetter
,
S. R.
,
Winka
,
J. R.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dees
,
J. E.
,
Laskowski
,
G. M.
, and
Briggs
,
R.
,
2015
, “
The Effect of Internal Crossflow on the Adiabatic Effectiveness of Compound Angle Film Cooling Holes
,”
ASME J. Turbomach.
,
137
(
7
), p.
071006
.
18.
Wilkes
,
E.
,
Anderson
,
J.
,
McClintic
,
J.
, and
Bogard
,
D.
,
2016
, “
An Investigation of Turbine Film Cooling Effectiveness With Shaped Holes and Internal Cross-Flow With Varying Operational Parameters
,”
ASME
Paper No. GT2016-56162.
19.
McClintic
,
J. W.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2018
, “
Effect of Internal Crossflow Velocity on Film Cooling Effectiveness—Part I: Axial Shaped Holes
,”
ASME J. Turbomach.
,
140
(
1
), p.
011003
.
20.
Dittmar
,
J.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Assessment of Various Film-Cooling Configurations Including Shaped and Compound Angle Holes Based on Large-Scale Experiments
,”
ASME J. Turbomach.
,
125
(
1
), pp.
57
64
.
21.
McClintic
,
J. W.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2018
, “
Effect of Internal Crossflow Velocity on Film Cooling Effectiveness—Part II: Compound Angle Shaped Holes
,”
ASME J. Turbomach.
,
140
(
1
), p.
011004
.
22.
Sakai
,
E.
, and
Takahashi
,
T.
,
2011
, “
Experimental and Numerical Study on Effects of Turbulence Promoters on Flat Plate Film Cooling
,”
ASME
Paper No. GT2011-45196.
23.
Choe, H.
,
Kays, W. M.
, and
Moffat, R. J.
, 1974, “
The Superposition Approach to Film-Cooling
,” American Society of Mechanical Engineers, Winter Annual Meeting, New York, Nov. 17–22, p. 10.
24.
Gritsch
,
M.
,
Baldauf
,
S.
,
Martiny
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1999
, “
The Superposition Approach to Local Heat Transfer Coefficients in High Density Ratio Film Cooling Flows
,”
ASME
Paper No. 99-GT-168.
25.
Kneer, J.
,
Puetz, F.
,
Schulz, A.
, and
Bauer, H.-J.
, 2014, “
Application of the Superposition Principle of Film Cooling on a Non-Axisymmetric Turbine Endwall
,” 15th International Symposium on Rotating Machinery (ISROMAC-15), Honolulu, HI, Feb. 24–28.
26.
Kneer
,
J.
,
Puetz
,
F.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2016
, “
A New Test Facility to Investigate Film Cooling on a Nonaxisymmetric Contoured Turbine Endwall—Part II: Heat Transfer and Film Cooling Measurements
,”
ASME J. Turbomach.
,
138
(
7
), p.
071004
.
27.
Ochs
,
M.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2010
, “
High Dynamic Range Infrared Thermography by Pixelwise Radiometric Self Calibration
,”
Infrared Phys. Technol.
,
53
(
2
), pp.
112
119
.
28.
Ochs
,
M.
,
Horbach
,
T.
,
Schulz
,
A.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2009
, “
A Novel Calibration Method for an Infrared Thermography System Applied to Heat Transfer Experiments
,”
Meas. Sci. Technol.
,
20
(
7
), p.
075103
.
29.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
30.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061008
.
31.
Haydt
,
S.
,
Lynch
,
S.
, and
Lewis
,
S.
,
2017
, “
The Effect of Area Ratio Change Via Increased Hole Length for Shaped Film Cooling Holes With Constant Expansion Angles
,”
ASME
Paper No. GT2017-63692.
32.
Anderson
,
J. B.
,
McClintic
,
J. W.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2017
, “
Freestream Flow Effects on Film Effectiveness and Heat Transfer Coefficient Augmentation for Compound Angle Shaped Holes
,”
ASME
Paper No. GT2017-64853.
You do not currently have access to this content.