Vane pressure side heat transfer is studied numerically using large eddy simulation (LES) on an aft-loaded vane with a large leading edge over a range of turbulence conditions. Numerical simulations are performed in a linear cascade at exit chord Reynolds number of Re = 5.1 × 105 at low (Tu ≈ 0.7%), moderate (Tu ≈ 7.9%), and high (Tu ≈ 12.4%) freestream turbulence with varying length scales as prescribed by the experimental measurements of Varty and Ames (2016, “Experimental Heat Transfer Distributions Over an Aft Loaded Vane With a Large Leading Edge at Very High Turbulence Levels,” ASME Paper No. IMECE2016-67029). Heat transfer predictions on the vane pressure side are in a very good agreement with the experimental measurements and the heat transfer augmentation due to the freestream turbulence is well captured. At Tu ≈ 12.4%, freestream turbulence enhances the Stanton number on the pressure surface without boundary layer transition to turbulence by a maximum of about 50% relative to the low freestream turbulence case. Higher freestream turbulence generates elongated structures and high-velocity streaks wrapped around the leading edge that contain significant energy. Amplification of the velocity streaks is observed further downstream with max rms of 0.3 near the trailing edge but no transition to turbulence or formation of turbulence spots is observed on the pressure side. The heat transfer augmentation at the higher freestream turbulence is primarily due to the initial amplification of the low-frequency velocity perturbations inside the boundary layer that persist along the entire chord of the airfoil. Stanton numbers appear to scale with the streamwise velocity fluctuations inside the boundary layer.

References

References
1.
Acharya
,
S.
, and
Kanani
,
Y.
,
2017
, “
Advances in Film Cooling Heat Transfer
,”
Advances in Heat Transfer
,
E. M.
Sparrow
,
J. P.
Abraham
, and
J. M.
Gorman
, eds., Vol.
49
,
Academic Press
, Cambridge, MA, pp.
91
156
.
2.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
3.
Kanani
,
Y.
,
Acharya
,
S.
, and
Ames
,
F.
,
2018
, “
Simulations of Slot Film-Cooling With Freestream Acceleration and Turbulence
,”
ASME J. Turbomach.
,
140
(
4
), p.
041005
.
4.
Busche
,
M. L.
,
Kingery
,
J. E.
, and
Ames
,
F. E.
,
2014
, “
Slot Film Cooling in an Accelerating Boundary Layer With High Free-Stream Turbulence
,”
ASME
Paper No. GT2014-25360.
5.
Radomsky
,
R. W.
, and
Thole
,
K. A.
,
2002
, “
Detailed Boundary Layer Measurements on a Turbine Stator Vane at Elevated Freestream Turbulence Levels
,”
ASME J. Turbomach.
,
124
(
1
), pp.
107
118
.
6.
Junkhan
,
G. H.
, and
Serovy
,
G. K.
,
1967
, “
Effects of Free-Stream Turbulence and Pressure Gradient on Flat-Plate Boundary-Layer Velocity Profiles and on Heat Transfer
,”
ASME J. Heat Transfer
,
89
(
2
), pp.
169
175
.
7.
Edwards
,
A.
, and
Furber
,
B. N.
,
1956
, “
The Influence of Free-Stream Turbulence on Heat Transfer by Convection From an Isolated Region of a Plane Surface in Parallel Air Flow
,”
Proc. Inst. Mech. Eng.
,
170
(
1
), pp.
941
954
.
8.
Reynolds
,
W. C.
,
Kays
,
W. M.
, and
Kline
,
S. J.
,
1958
, “
Heat Transfer in the Turbulent Incompressible Boundary Layer—Part 1: Constant Wall Temperature
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA-MEMO-12-1-58W
.https://ntrs.nasa.gov/search.jsp?R=19980228020
9.
Kestin
,
J.
,
Maeder
,
P. F.
, and
Wang
,
H. E.
,
1961
, “
Influence of Turbulence on the Transfer of Heat From Plates With and Without a Pressure Gradient
,”
Int. J. Heat Mass Transfer
,
3
(
2
), pp.
133
154
.
10.
Simonich
,
J. C.
, and
Bradshaw
,
P.
,
1978
, “
Effect of Free-Stream Turbulence on Heat Transfer Through a Turbulent Boundary Layer
,”
ASME J. Heat Transfer
,
100
(
4
), pp.
671
677
.
11.
Ames
,
F. E.
,
1990
, “
Heat Transfer With High Intensity, Large Scale Turbulence: The Flat Plate Turbulent Boundary Layer and the Cylindrical Stagnation Point
,” Ph.D. thesis, Stanford University, Stanford, CA.
12.
Thole
,
K. A.
, and
Bogard
,
D. G.
,
1995
, “
Enhanced Heat Transfer and Shear Stress Due to High Free-Stream Turbulence
,”
ASME J. Turbomach.
,
117
(
3
), pp.
418
424
.
13.
Hancock
,
P. E.
, and
Bradsh
,
P.
,
1983
, “
The Effect of Free-Stream Turbulence on Turbulent Boundary Layers
,”
ASME J. Fluids Eng.
,
105
(
3
), pp.
284
289
.
14.
Maciejewski
,
P. K.
, and
Moffat
,
R. J.
,
1992
, “
Heat Transfer With Very High Free-Stream Turbulence—Part II: Analysis of Results
,”
ASME J. Heat Transfer
,
114
(
4
), pp.
834
839
.
15.
Maciejewski
,
P. K.
, and
Moffat
,
R. J.
,
1992
, “
Heat Transfer With Very High Free-Stream Turbulence—Part I: Experimental Data
,”
ASME J. Heat Transfer
,
114
(
4
), pp.
827
833
.
16.
Kondjoyan
,
A.
,
Péneau
,
F.
, and
Boisson
,
H. C.
,
2002
, “
Effect of High Free Stream Turbulence on Heat Transfer Between Plates and Air Flows: A Review of Existing Experimental Results
,”
Int. J. Therm. Sci.
,
41
(
1
), pp.
1
16
.
17.
Li
,
Q.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
,
2010
, “
Simulations of Heat Transfer in a Boundary Layer Subject to Free-Stream Turbulence
,”
J. Turbul.
,
11
, p.
N45
.
18.
Blair
,
M. F.
,
1983
, “
Influence of Free-Stream Turbulence on Turbulent Boundary Layer Heat Transfer and Mean Profile Development—Part I: Experimental Data
,”
ASME J. Heat Transfer
,
105
(
1
), pp.
33
40
.
19.
Blair
,
M. F.
,
1983
, “
Influence of Free-Stream Turbulence on Turbulent Boundary Layer Heat Transfer and Mean Profile Development—Part II: Analysis of Results
,”
ASME J. Heat Transfer
,
105
(
1
), pp.
41
47
.
20.
Ames, F. E.
, 1997, “
The Influence of Large-Scale High-Intensity Turbulence on Vane Heat Transfer
,”
ASME J. Turbomach.
,
119
(1), pp. 23–30.
21.
Nix
,
A. C.
,
Diller
,
T. E.
, and
Ng
,
W. F.
,
2007
, “
Experimental Measurements and Modeling of the Effects of Large-Scale Freestream Turbulence on Heat Transfer
,”
ASME J. Turbomach.
,
129
(
3
), pp.
542
550
.
22.
Gourdain
,
N.
,
Gicquel
,
L. Y. M.
, and
Collado
,
E.
,
2012
, “
RANS and LES for the Heat Transfer Prediction in Turbine Guide Vane
,”
J. Propul. Power
,
28
(
2
), pp.
423
433
.
23.
Saric
,
W.
,
1994
, “
Gortler Vortices
,”
Annu. Rev. Fluid Mech.
,
26
(
1
), pp.
379
409
.
24.
Wheeler
,
A. P. S.
,
Sandberg
,
R. D.
,
Sandham
,
N. D.
,
Pichler
,
R.
,
Michelassi
,
V.
, and
Laskowski
,
G.
,
2016
, “
Direct Numerical Simulations of a High-Pressure Turbine Vane
,”
ASME J. Turbomach.
,
138
(
7
), p.
071003
.
25.
Schobeiri
,
M. T.
, and
Nikparto
,
A.
,
2014
, “
A Comparative Numerical Study of Aerodynamics and Heat Transfer on Transitional Flow Around a Highly Loaded Turbine Blade With Flow Separation Using RANS, URANS and LES
,”
ASME
Paper No. GT2014-25828.
26.
Varty
,
J. W.
, and
Ames
,
F. E.
,
2016
, “
Experimental Heat Transfer Distributions Over an Aft Loaded Vane With a Large Leading Edge at Very High Turbulence Levels
,”
ASME
Paper No. IMECE2016-67029.
27.
Bons
,
J.
,
2005
, “
A Critical Assessment of Reynolds Analogy for Turbine Flows
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
472
485
.
28.
Jarrin
,
N.
,
Benhamadouche
,
S.
,
Laurence
,
D.
, and
Prosser
,
R.
,
2006
, “
A Synthetic-Eddy-Method for Generating Inflow Conditions for Large-Eddy Simulations
,”
Int. J. Heat Fluid Flow
,
27
(
4
), pp.
585
593
.
29.
Jarrin
,
N.
,
2008
, “
Synthetic Inflow Boundary Conditions for the Numerical Simulation of Turbulence
,” The University of Manchester, Manchester, UK.
30.
Issa
,
R. I.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.
31.
Leonard
,
B. P.
,
1979
, “
A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
19
(
1
), pp.
59
98
.
32.
Ducros
,
F.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
1998
, “
Wall-Adapting Local Eddy-Viscosity Models for Simulations in Complex Geometries
,”
Numerical Methods for Fluid Dynamics VI
,
M. J.
Baines
, ed.,
Oxford University Computing Laboratory
,
Oxford, UK
, pp.
293
299
.
33.
Zaki
,
T. A.
,
2013
, “
From Streaks to Spots and on to Turbulence: Exploring the Dynamics of Boundary Layer Transition
,”
Flow Turbul. Combust.
,
91
(
3
), pp.
451
473
.
34.
Kreilos
,
T.
,
Khapko
,
T.
,
Schlatter
,
P.
,
Duguet
,
Y.
,
Henningson
,
D. S.
, and
Eckhardt
,
B.
,
2016
, “
Bypass Transition and Spot Nucleation in Boundary Layers
,”
Phys. Rev. Fluids
,
1
, p.
043602
.
35.
Durbin
,
P. A.
,
2017
, “
Perspectives on the Phenomenology and Modeling of Boundary Layer Transition
,”
Flow Turbul. Combust.
,
99
(
1
), pp.
1
23
.
36.
Durbin
,
P.
, and
Wu
,
X.
,
2007
, “
Transition beneath Vortical Disturbances
,”
Annu. Rev. Fluid Mech.
,
39
(
1
), pp.
107
128
.
37.
Goldstein
,
M. E.
,
2014
, “
Effect of Free-Stream Turbulence on Boundary Layer Transition
,”
Philos. Trans. R. Soc. A
,
372
(
2020
), p.
20130354
.
38.
Li
,
Q.
,
Schlatter
,
P.
,
Brandt
,
L.
, and
Henningson
,
D. S.
,
2009
, “
DNS of a Spatially Developing Turbulent Boundary Layer With Passive Scalar Transport
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
916
929
.
39.
Kim
,
J.
, and
Moin
,
P.
,
1989
, “
Transport of Passive Scalars in a Turbulent Channel Flow
,”
Turbulent Shear Flows
,
J. C.
André
,
J.
Cousteix
,
F.
Durst
,
B. E.
Launder
,
F. W.
Schmidt
, and
J. H.
Withelaw
, eds., Vol.
6
,
Springer-Verlag
,
Berlin
.
40.
Zaki
,
T. A.
,
Wissink
,
J. G.
,
Rodi
,
W.
, and
Durbin
,
P. A.
,
2010
, “
Direct Numerical Simulations of Transition in a Compressor Cascade: The Influence of Free-Stream Turbulence
,”
J. Fluid Mech.
,
665
, pp.
57
98
.
41.
Li
,
D.
,
Luo
,
K.
, and
Fan
,
J.
,
2016
, “
Direct Numerical Simulation of Heat Transfer in a Spatially Developing Turbulent Boundary Layer
,”
Phys. Fluids
,
28
(
10
), p.
105104
.
42.
Kasagi
,
N.
,
Tomita
,
Y.
, and
Kuroda
,
A.
,
1992
, “
Direct Numerical Simulation of Passive Scalar Field in a Turbulent Channel Flow
,”
ASME J. Heat Transfer
,
114
(
3
), pp.
598
606
.
You do not currently have access to this content.