A compressor blade integrated with circumferential groove casing treatment (CGCT) is optimized in this study. A hybrid aerodynamic optimization algorithm that combines the differential evolution (DE) with a radial basis function (RBF) response surface is used for the multi-objective optimization via the computational fluid dynamics (CFD) analysis. The sweep and lean distributions are optimized to pursue the maximum total pressure ratio and adiabatic efficiency at the design point. Constraints on the choking mass flow rate and the near-stall compression ratio are imposed to ensure the off-design performance. The performance is improved much more with the blade-CGCT integrated optimization than with the blade-only optimization. The stall margin of the blade-only optimized blade with CGCT added as an afterthought can be even worse than the baseline blade. The CGCT-removal test for the blade-CGCT integrated optimization result further verifies that the superior performance of the blade-CGCT integrated optimization is obtained via optimizing the coupling between the effects of the sweep and lean on the blade loading and the effects of the CGCT on the flow blockage.

References

References
1.
Hathaway
,
M. D.
,
2007
, “
Passive Endwall Treatments for Enhancing Stability
,” NASA Glenn Research Center, Cleveland, OH, Report No.
TM-2007-214409
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070025023.pdf
2.
Houghton
,
T.
, and
Day
,
I.
,
2011
, “
Enhancing the Stability of Subsonic Compressors Using Casing Grooves
,”
ASME J. Turbomach.
,
133
(
2
), p.
021007
.
3.
Hah
,
C.
,
2011
, “
Toward Optimum Configuration of Circumferential Groove Casing Treatment in Transonic Compressor Rotors
,”
ASME
Paper No. AJK2011-05020
.
4.
Heinichen
,
F.
,
Gümmer
,
V.
, and
Schiffer
,
H.-P.
,
2011
, “
Numerical Investigation of a Single Circumferential Groove Casing Treatment on Three Different Compressor Rotors
,”
ASME
Paper No. GT2011-45905
.
5.
Rabe
,
D. C.
, and
Hah
,
C.
,
2002
, “
Application of Casing Circumferential Grooves for Improved Stall Margin in a Transonic Axial Compressor
,”
ASME
Paper No. GT2002-30641
.
6.
Chen
,
H.
,
Huang
,
X.
,
Shi
,
K.
,
Fu
,
S.
,
Ross
,
M.
,
Bennington
,
M. A.
,
Cameron
,
J. D.
,
Morris
,
S. C.
,
McNulty
,
S.
, and
Wadia
,
A.
,
2013
, “
A Computational Fluid Dynamics Study of Circumferential Groove Casing Treatment in a Transonic Axial Compressor
,”
ASME J. Turbomach.
,
136
(
3
), p.
031003
.
7.
Osborn
,
W. M.
,
Lewis
,
G. W. J.
, and
Heidelberg
,
L. J.
,
1971
, “
Effect of Several Porous Casing Treatments on Stall Limit and on Overall Performance of an Axial-Flow Compressor Rotor
,” NASA Lewis Research Center, Cleveland, OH, Techincal Note No.
D-6537
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19720004239.pdf
8.
Greitzer
,
E. M.
,
Nikkanen
,
J. P.
,
Haddad
,
D. E.
,
Mazzawy
,
R. S.
, and
Joslyn
,
H. D.
,
1979
, “
A Fundamental Criterion for the Application of Rotor Casing Treatment
,”
ASME J. Fluids Eng.
,
101
(
2
), pp.
237
243
.
9.
Muller
,
M. W.
,
Schiffer
,
H.-P.
,
Voges
,
M.
, and
Hah
,
C.
,
2011
, “
Investigation of Passage Flow Features in a Transonic Compressor Rotor With Casing Treatments
,”
ASME
Paper No. GT2011-45364
.
10.
Keskin
,
A.
, and
Bestle
,
D.
,
2006
, “
Application of Multi-Objective Optimization to Axial Compressor Preliminary Design
,”
Aerosp. Sci. Technol.
,
10
(
7
), pp.
581
589
.
11.
Wadia
,
A. R.
,
Szucs
,
P. N.
, and
Crall
,
D. W.
,
1998
, “
Inner Workings of Aerodynamic Sweep
,”
ASME J. Turbomach.
,
120
(
4
), pp.
671
682
.
12.
Passrucker
,
H.
,
Engber
,
M.
,
Kablitz
,
S.
, and
Hennecke
,
D. K.
,
2003
, “
Effect of Forward Sweep in a Transonic Compressor Rotor
,”
Proc. Inst. Mech. Eng., Part A
,
217
(
4
), pp.
357
366
.
13.
McNulty
,
G. S.
,
Decker
,
J. J.
,
Beacher
,
B. F.
, and
Khalid
,
S. A.
,
2003
, “
The Impact of Forward Swept Rotors on Tip-Limited Low-Speed Axial Compressors
,”
ASME
Paper No. GT2003-38837
.
14.
Gallimore
,
S. J.
,
Bolger
,
J. J.
,
Cumpsty
,
N. A.
,
Taylor
,
M. J.
,
Wright
,
P. I.
, and
Place
,
J. M. M.
,
2002
, “
The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading—Part I: University Research and Methods Development
,”
ASME J. Turbomach.
,
124
(
4
), pp.
521
532
.
15.
Denton
,
J. D.
, and
Xu
,
L.
,
2002
, “
The Effects of Lean and Sweep on Transonic Fan Performance
,”
ASME
Paper No. GT2002-30327
.
16.
Seo
,
S. J.
,
Choi
,
S. M.
, and
Kim
,
K. Y.
,
2008
, “
Design Optimization of a Low-Speed Fan Blade With Sweep and Lean
,”
Proc. Inst. Mech. Eng., Part A
,
222
(
1
), pp.
87
92
.
17.
Ahn
,
C. S.
, and
Kim
,
K. Y.
,
2003
, “
Aerodynamic Design Optimization of a Compressor Rotor With Navier-Stokes Analysis
,”
Proc. Inst. Mech. Eng., Part A
,
217
(
2
), pp.
179
184
.
18.
Benini
,
E.
,
2004
, “
Three-Dimensional Multi-Objective Design Optimization of a Transonic Compressor Rotor
,”
J. Propuls. Power
,
20
(
3
), pp.
559
565
.
19.
Samad
,
A.
, and
Kim
,
K.-Y.
,
2008
, “
Shape Optimization of an Axial Compressor Blade by Multi-Objective Genetic Algorithm
,”
Proc. Inst. Mech. Eng., Part A
,
222
(
6
), pp.
599
611
.
20.
Oyama
,
A.
,
Park
,
B.
,
Liou
,
M.
, and
Obayashi
,
S.
,
2003
, “
High-Fidelity Swept and Leaned Rotor Blade Design Optimization Using Evolutionary Algorithm
,”
AIAA
Paper No. AIAA2003-4091
.
21.
Madden
,
D. S.
, and
West
,
M. A.
,
2005
, “
Effects of Inlet Distortion on the Stability of an Advanced Military Swept Fan Stage With Casing Treatment
,”
ASME
Paper No. GT2005-68693
.
22.
Houghton
,
T.
, and
Day
,
I.
,
2011
, “
Stability Enhancement by Casing Grooves: The Importance of Stall Inception Mechanism and Solidity
,”
ASME J. Turbomach.
,
134
(
2
), p.
021003
.
23.
Kim
,
J. H.
,
Choi
,
K. J.
, and
Kim
,
K. Y.
,
2013
, “
Aerodynamic Analysis and Optimization of a Transonic Axial Compressor With Casing Grooves to Improve Operating Stability
,”
Aerosp. Sci. Technol.
,
29
(
1
), pp.
81
91
.
24.
Goinis
,
G.
, and
Nicke
,
E.
,
2016
, “
Optimizing Surge Margin and Efficiency of a Transonic Compressor
,”
ASME
Paper No. GT2016-57896
.
25.
Cameron
,
J. D.
,
Bennington
,
M. A.
,
Ross
,
M. H.
,
Morris
,
S. C.
,
Du
,
J.
,
Lin
,
F.
, and
Chen
,
J.
,
2013
, “
The Influence of Tip Clearance Momentum Flux on Stall Inception in a High-Speed Axial Compressor
,”
ASME J. Turbomach.
,
135
(
5
), p.
051005
.
26.
Kelly
,
R.
,
Hickman
,
A. R.
,
Shi
,
K.
,
Morris
,
S. C.
, and
Jemcov
,
A.
,
2016
, “
Very Large Eddy Simulation of a Transonic Axial Compressor Stage
,”
AIAA
Paper No. AIAA2016-4745
.
27.
Cameron
,
J. D.
, and
Morris
,
S. C.
,
2007
, “
Spatial Correlation Based Stall Inception Analysis
,”
ASME
Paper No. GT2007-28268
.
28.
Shi
,
K.
,
Chen
,
H. X.
, and
Fu
,
S.
,
2013
, “
Numerical Investigation of the Casing Treatment Mechanism With a Single Circumferential Groove
,”
Sci. China Phys. Mech. Astron.
,
56
(
2
), pp.
353
365
.
29.
Chen
,
H.
,
Fu
,
S.
, and
Li
,
F.
,
2003
, “
Navier–Stokes Simulations for Transport Aircraft Wing/Body High-Lift Configurations
,”
J. Aircr.
,
40
(
5
), pp.
883
890
.
30.
Deng
,
K.
, and
Chen
,
H.
,
2016
, “
A Hybrid Aerodynamic Optimization Algorithm Based on Differential Evolution and RBF Response Surface
,”
AIAA
Paper No. AIAA2016-3671
.
31.
Toro
,
E. F.
,
Spruce
,
M.
, and
Speares
,
W.
,
1994
, “
Restoration of the Contact Surface in the HLL-Riemann Solver
,”
Shock Waves
,
4
(
1
), pp.
25
34
.
32.
Van Leer
,
B.
,
1977
, “
Towards the Ultimate Conservative Difference Scheme—III: Upstream-Centered Finite-Difference Schemes for Ideal Compressible Flow
,”
J. Comput. Phys.
,
23
(
3
), pp.
263
275
.
33.
Van Albada
,
G. D.
,
Van Leer
,
B.
, and
Roberts
,
W. W.
,
1982
, “
A Comparative Study of Computational Methods in Cosmic Gas Dynamics
,”
J. Astron. Astrophys.
,
108
(1), pp.
76
84
.
34.
Menter
,
F. R.
,
1992
, “
Improved Two-Equation k-ω Turbulence Models for Aerodynamic Flows
,” NASA Technical Memorandum, NASA Ames Research Center, Moffett Field, CA, Report No.
103975
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930013620.pdf
35.
Yoon
,
S.
, and
Jameson
,
A.
,
1988
, “
Lower-Upper Symmetric-Gauss-Seidel Method for the Euler and Navier–Stokes Equations
,”
AIAA J.
,
26
(
9
), pp.
1025
1026
.
36.
Haixin
,
C.
,
Haixin
,
C.
,
Xudong
,
H.
,
Xudong
,
H.
,
Song
,
F.
, and
Song
,
F.
,
2006
, “
CFD Investigation on Stall Mechanisms and Casing Treatment of a Transonic Compressor
,”
AIAA
Paper No. AIAA2006-4799
.
37.
Huang
,
X.
,
Chen
,
H.
, and
Fu
,
S.
,
2008
, “
CFD Investigation on the Circumferential Grooves Casing Treatment of Transonic Compressor
,”
ASME
Paper No. GT2008-51107
.
38.
Siller
,
U.
,
Voß
,
C.
, and
Nicke
,
E.
,
2009
, “
Automated Multidisciplinary Optimization of a Transonic Axial Compressor
,”
AIAA
Paper No. AIAA2009-863
.
39.
Denton
,
J. D.
,
2010
, “
Some Limitations of Turbomachinery CFD
,”
ASME
Paper No. GT2010-22540
.
40.
Ginder
,
R. B.
,
Calvert
,
W. J.
, and
Emmerson
,
P. R.
,
2007
, “
Predicted and Measured Performance and Stability of Two Variants of a Military Fan
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
6
), pp.
745
757
.
41.
Zhao
,
Q.
,
Zhou
,
X.
, and
Xiang
,
X.
,
2014
, “
Multi-Objective Optimization of Groove Casing Treatment in a Transonic Compressor
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
6
), pp.
626
637
.
42.
Cornelius
,
C.
,
Biesinger
,
T.
,
Galpin
,
P.
, and
Braune
,
A.
,
2013
, “
Experimental and Computational Analysis of a Multistage Axial Compressor Including Stall Prediction by Steady and Transient CFD Methods
,”
ASME J. Turbomach.
,
136
(
6
), p.
061013
.
43.
Cumpsty
,
N. A.
,
1989
,
Compressor Aerodynamics
,
Longman Scientific and Technical
, Harlow, UK.
You do not currently have access to this content.