This paper describes the development and initial application of an adjoint harmonic balance (HB) solver. The HB method is a numerical method formulated in the frequency domain which is particularly suitable for the simulation of periodic unsteady flow phenomena in turbomachinery. Successful applications of this method include unsteady aerodynamics as well as aeroacoustics and aeroelasticity. Here, we focus on forced response due to the interaction of neighboring blade rows. In the simulation-based design and optimization of turbomachinery components, it is often helpful to be able to compute not only the objective values—e.g., performance data of a component—themselves but also their sensitivities with respect to variations of the geometry. An efficient way to compute such sensitivities for a large number of geometric changes is the application of the adjoint method. While this is frequently used in the context of steady computational fluid dynamics (CFD), it becomes prohibitively expensive for unsteady simulations in the time domain. For unsteady methods in the frequency domain, the use of adjoint solvers is feasible but still challenging. The present approach employs the reverse mode of algorithmic differentiation (AD) to construct a discrete adjoint of an existing HB solver in the framework of an industrially applied CFD code. The paper discusses implementational issues as well as the performance of the adjoint solver, in particular regarding memory requirements. The presented method is applied to compute the sensitivities of aeroelastic objectives with respect to geometric changes in a turbine stage.

References

References
1.
Jameson
,
A.
,
1988
, “
Aerodynamic Design Via Control Theory
,”
J. Sci. Comput.
,
3
(
3
), pp.
233
260
.
2.
Giles
,
M. B.
, and
Pierce
,
N. A.
,
2000
, “
An Introduction to the Adjoint Approach to Design
,”
Flow Turbul. Combust.
,
65
(
3/4
), pp.
393
415
.
3.
Kersken
,
H.-P.
,
Frey
,
C.
,
Voigt
,
C.
, and
Ashcroft
,
G.
,
2012
, “
Time-Linearized and Time-Accurate 3D RANS Methods for Aeroelastic Analysis in Turbomachinery
,”
ASME J. Turbomach.
,
134
(
5
), p.
051024
.
4.
Kielb
,
R.
,
2001
, “
CFD for Turbomachinery Unsteady Flows—An Aeroelastic Design Perspective
,”
AIAA
Paper No. 2001-0429.
5.
He
,
L.
, and
Ning
,
W.
,
1998
, “
Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines
,”
AIAA J.
,
36
(
11
), pp.
2005
2012
.
6.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.
7.
Hall
,
K. C.
,
Ekici
,
K.
,
Thomas
,
J. P.
, and
Dowell
,
E. H.
,
2013
, “
Harmonic Balance Methods Applied to Computational Fluid Dynamics Problems
,”
Int. J. Comput. Fluid Dyn.
,
27
(
2
), pp.
52
67
.
8.
He
,
L.
,
2010
, “
Fourier Methods for Turbomachinery Applications
,”
Prog. Aerosp. Sci.
,
46
(
8
), pp.
329
341
.
9.
Ekici
,
K.
, and
Huang
,
H.
,
2012
, “
An Assessment of Frequency-Domain and Time-Domain Techniques for Turbomachinery Aeromechanics
,”
AIAA
Paper No. 2012-3126.
10.
Nadarajah
,
S. K.
,
2007
, “
Convergence Studies of the Time Accurate and Non-Linear Frequency Domain Methods for Optimum Shape Design
,”
Int. J. Comput. Fluid Dyn.
,
21
(
5–6
), pp.
189
207
.
11.
Florea
,
R.
, and
Hall
,
K.
,
2001
, “
Sensitivity Analysis of Unsteady Inviscid Flow Through Turbomachinery Cascades
,”
AIAA J.
,
39
(
6
), pp.
1047
1056
.
12.
Duta
,
M. C.
,
Giles
,
M. B.
, and
Campobasso
,
M. S.
,
2002
, “
The Harmonic Adjoint Approach to Unsteady Turbomachinery Design
,”
Int. J. Numer. Methods Fluids
,
40
(
3–4
), pp.
323
332
.
13.
Duta
,
M.
,
Campobasso
,
M.
,
Giles
,
M.
, and
Lapworth
,
L.
,
2006
, “
Adjoint Harmonic Sensitivities for Forced Response Minimization
,”
ASME J. Eng. Gas Turbines Power
,
128
(
1
), pp.
183
189
.
14.
Thomas
,
J.
,
Hall
,
K.
, and
Dowell
,
E.
,
2005
, “
Discrete Adjoint Approach for Modeling Unsteady Aerodynamic Design Sensitivities
,”
AIAA J.
,
43
(
9
), pp.
1931
1936
.
15.
Thomas
,
J.
,
Dowell
,
E.
, and
Hall
,
K.
,
2013
, “
Discrete Adjoint Method for Nonlinear Aeroelastic Sensitivities for Compressible and Viscous Flows
,”
AIAA
Paper No. 2013-1860.
16.
Thomas
,
J.
, and
Dowell
,
E.
,
2014
, “
Discrete Adjoint Method for Aeroelastic Design Optimization
,”
AIAA
Paper No. 2014-2298.
17.
Mader
,
C.
, and
Martins
,
J.
,
2012
, “
Derivatives for Time-Spectral Computational Fluid Dynamics Using an Automatic Differentiation Adjoint
,”
AIAA J.
,
50
(
12
), pp.
2809
2819
.
18.
Gopinath
,
A.
, and
Jameson
,
A.
,
2005
, “
Time Spectral Method for Periodic Unsteady Computations Over Two- and Three-Dimensional Bodies
,”
AIAA
Paper No. 2005-1220.
19.
van der Weide
,
E.
,
Gopinath
,
A.
, and
Jameson
,
A.
,
2005
, “
Turbomachinery Applications With the Time Spectral Method
,”
AIAA
Paper No. 2005-4905.
20.
Nadarajah
,
S. K.
,
McMullen
,
M. S.
, and
Jameson
,
A.
,
2006
, “
Aerodynamic Shape Optimization for Unsteady Three-Dimensional Flows
,”
Int. J. Comput. Fluid Dyn.
,
20
(
8
), pp.
533
548
.
21.
Nadarajah
,
S. K.
, and
Jameson
,
A.
,
2007
, “
Optimum Shape Design for Unsteady Three-Dimensional Viscous Flows Using a Nonlinear Frequency-Domain Method
,”
J. Aircr.
,
44
(
5
), pp.
1513
1527
.
22.
McMullen
,
M.
,
Jameson
,
A.
, and
Alonso
,
J.
,
2001
, “
Acceleration of Convergence to a Periodic Steady State in Turbomachinery Flows
,”
AIAA
Paper No. 2001-0152.
23.
McMullen
,
M.
,
Jameson
,
A.
, and
Alonso
,
J.
,
2002
, “
Application of a Non-Linear Frequency Domain Solver to the Euler and Navier–Stokes Equations
,”
AIAA
Paper No. 2002-0120.
24.
McMullen
,
M. S.
,
2003
, “
The Application of Non-Linear Frequency Domain Methods to the Euler and Navier-Stokes Equations
,”
Ph.D. thesis
, Stanford University, Stanford, CA.http://aero-comlab.stanford.edu/mcmu/Papers/mcmullen.thesis.pdf
25.
He
,
L.
, and
Wang
,
D. X.
,
2011
, “
Concurrent Blade Aerodynamic-Aero-Elastic Design Optimization Using Adjoint Method
,”
ASME J. Turbomach.
,
133
(
1
), p.
011021
.
26.
Huang
,
H.
, and
Ekici
,
K.
,
2014
, “
A Discrete Adjoint Harmonic Balance Method for Turbomachinery Shape Optimization
,”
Aerosp. Sci. Technol.
,
39
, pp.
481
490
.
27.
Huang
,
H.
, and
Ekici
,
K.
,
2013
, “
An Efficient Harmonic Balance Method for Unsteady Flows in Cascades
,”
Aerosp. Sci. Technol.
,
29
(
1
), pp.
144
154
.
28.
Ma
,
C.
,
Su
,
X.
, and
Yuan
,
X.
,
2016
, “
An Efficient Unsteady Adjoint Optimization System for Multistage Turbomachinery
,”
ASME J. Turbomach.
,
139
(
1
), p.
011003
.
29.
Engels-Putzka
,
A.
, and
Frey
,
C.
,
2015
, “
Adjoint Harmonic Balance Method for Forced Response Analysis in Turbomachinery
,”
Sixth International Conference on Coupled Problems in Science and Engineering
, Venice, Italy, May 18–20, pp.
645
656
.https://elib.dlr.de/96512/1/Engels-Putzka_2015_CoupledProblems.pdf
30.
Engels-Putzka
,
A.
, and
Frey
,
C.
,
2016
, “
Sensitivity Analysis for Forced Response in Turbomachinery Using an Adjoint Harmonic Balance Method
,”
Seventh European Congress on Computational Methods in Applied Sciences and Engineering
, Crete Island, Greece, June 5–10, pp. 3893–3911.
31.
Engels-Putzka
,
A.
, and
Frey
,
C.
,
2017
, “
Adjoint Process Chain for Forced Response Analysis Using a Harmonic Balance Method
,”
12th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics (ETC12)
, Stockholm, Sweden, April 3–7, Paper No. ETC2017-161.
32.
Griewank
,
A.
,
2000
,
Evaluating Derivatives, Principles and Techniques of Algorithmic Differentiation
,
SIAM
,
Philadelphia, PA
.
33.
Sagebaum
,
M.
,
Özkaya
,
E.
, and
Gauger
,
N. R.
,
2014
, “
Challenges in the Automatic Differentiation of an Industrial CFD Solver
,”
Evolutionary and Deterministic Methods for Design, Optimization and Control With Application to Industrial and Societal Problems (EUROGEN 2013)
, Las Palmas de Gran Canaria, Spain, Oct. 7–9, pp. 89–103.
34.
Sagebaum
,
M.
,
Özkaya
,
E.
,
Gauger
,
N. R.
,
Backhaus
,
J.
,
Frey
,
C.
,
Mann
,
S.
, and
Nagel
,
M.
,
2017
, “
Efficient Algorithmic Differentiation Techniques for Turbo-Machinery Design
,”
AIAA
Paper No. 2017-3998.
35.
Backhaus
,
J.
,
Schmitz
,
A.
,
Frey
,
C.
,
Mann
,
S.
,
Nagel
,
M.
,
Sagebaum
,
M.
, and
Gauger
,
N. R.
,
2017
, “
Application of an Algorithmically Differentiated Turbomachinery Flow Solver to the Optimization of a Fan Stage
,”
AIAA
Paper No. 2017-3997.
36.
Nürnberger
,
D.
,
Eulitz
,
F.
,
Schmitt
,
S.
, and
Zachcial
,
A.
,
2001
, “
Recent Progress in the Numerical Simulation of Unsteady Viscous Multistage Turbomachinery Flow
,”
15th International Symposium on Air Breathing Engines (ISABE 2001)
, Bangalore, India, Sept. 3–7, p.
1081
.
37.
Becker
,
K.
,
Heitkamp
,
K.
, and
Kügeler
,
E.
,
2010
, “
Recent Progress in a Hybrid-Grid CFD Solver for Turbomachinery Flows
,”
Fifth European Conference on Computational Fluid Dynamics
(
ECCOMAS CFD
), Lisbon, Portugal, June 14–17, Paper No. 01609.https://www.researchgate.net/publication/225006412_Recent_Progress_In_A_Hybrid-Grid_CFD_Solver_For_Turbomachinery_Flows
38.
Frey
,
C.
,
Ashcroft
,
G.
,
Kersken
,
H.-P.
, and
Voigt
,
C.
,
2014
, “
A Harmonic Balance Technique for Multistage Turbomachinery Applications
,”
ASME
Paper No. GT2014-45615.
39.
Ashcroft
,
G.
,
Frey
,
C.
, and
Kersken
,
H.-P.
,
2014
, “
On the Development of a Harmonic Balance Method for Aeroelastic Analysis
,”
Sixth European Conference on Computational Fluid Dynamics
(
ECFD VI
), Barcelona, Spain, July 20–25, pp. 5885–5897.https://www.researchgate.net/publication/265414877_On_the_development_of_a_harmonic_balance_method_for_aeroelastic_analysis
40.
Christianson
,
B.
,
1994
, “
Reverse Accumulation and Attractive Fixed Points
,”
Optim. Methods Software
,
3
(
4
), pp.
311
326
.
41.
Sagebaum
,
M.
,
Albring
,
T.
, and
Gauger
,
N. R.
,
2017
, “
High-Performance Derivative Computations Using Codipack
,” arXiv preprint
arXiv:1709.07229
.https://arxiv.org/abs/1709.07229
42.
Voigt
,
C.
,
Frey
,
C.
, and
Kersken
,
H.-P.
,
2010
, “
Development of a Generic Surface Mapping Algorithm for Fluid-Structure-Interaction Simulations in Turbomachinery
,”
Fifth European Conference on Computational Fluid Dynamics (ECFD V)
, Lisbon, Portugal, June 14–17, Paper No. 01737.
43.
Engels-Putzka
,
A.
, and
Frey
,
C.
,
2012
, “
Adjoint Mesh Deformation and Adjoint-Based Sensitvitities With Respect to Boundary Values
,”
Sixth European Congress on Computational Methods in Applied Sciences and Engineering
(
ECCOMAS 2012
), Vienna, Austria, Sept. 10–14, pp.
1789
1808
.https://elib.dlr.de/81179/1/1042_000421_2012-05-21_P20.pdf
44.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.
45.
Orszag
,
S. A.
,
1971
, “
Elimination of Aliasing in Finite Difference Schemes by Filtering High-Wavenumber Components
,”
J. Atmos. Sci.
,
28
(
6
), p.
1074
.
46.
Dhondt
,
G.
,
2004
,
The Finite Element Method for Three-Dimensional Thermomechanical Applications
,
Wiley
,
Hoboken, NJ
.
This content is only available via PDF.
You do not currently have access to this content.