The cooling performance of sweeping jet film cooling was studied on a turbine vane suction surface in a low-speed linear cascade wind tunnel. The sweeping jet holes consist of fluidic oscillators with an aspect ratio (AR) of unity and a hole spacing of Pd/D = 6. Infrared (IR) thermography was used to estimate the adiabatic film effectiveness at several blowing ratios and two different freestream turbulence levels (Tu = 0.3% and 6.1%). Convective heat transfer coefficient was measured by a transient IR technique, and the net heat flux benefit was calculated. The total pressure loss due to sweeping jet film cooling was characterized by traversing a total pressure probe at the exit plane of the cascade. Tests were performed with a baseline shaped hole (SH) (777-shaped hole) for comparison. The sweeping jet hole showed higher adiabatic film effectiveness than the 777-shaped hole in the near hole region. Although the unsteady sweeping action of the jet augments heat transfer, the net positive cooling benefit is higher for sweeping jet holes compared to 777 hole at particular flow conditions. The total pressure loss measurement showed a 12% increase in total pressure loss at a blowing ratio of M = 1.5 for sweeping jet hole, while 777-shaped hole showed a 8% total pressure loss increase at the corresponding blowing ratio.

References

References
1.
Bunker
,
R. S.
,
2010
, “
Film Cooling: Breaking the Limits of Diffusion Shaped Holes
,”
J. Heat Transfer Res.
,
41
(
6
), pp.
627
650
.
2.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
549
556
.
3.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Effect of Geometric Variations on the Cooling Performance of Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061008
.
4.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
2002
, “
A Converging Slot-Hole Film-Cooling Geometry—Part 1: Low-Speed Flat-Plate Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
453
460
.
5.
Lu
,
Y.
,
Faucheaux
,
D.
, and
Ekkad
,
S. V.
,
2005
, “
Film Cooling Measurements for Novel Hole Configurations
,”
ASME
Paper No. HT2005-72396.
6.
Liu
,
J. S.
,
Malak
,
M. F.
,
Tapia
,
L. A.
,
Crites
,
D. C.
,
Ramachandran
,
D.
,
Srinivasan
,
B.
,
Muthiah
,
G.
, and
Venkataramanan
,
J.
,
2010
, “
Enhanced Film Cooling Effectiveness With New Shaped Holes
,”
ASME
Paper No. GT2010-22774.
7.
Heidmann
,
J. D.
, and
Ekkad
,
S. V.
,
2008
, “
A Novel Antivortex Turbine Film-Cooling Hole Concept
,”
ASME J. Turbomach.
,
130
(
3
), p.
031020
.
8.
Heidmann
,
J. D.
,
2008
, “
A Numerical Study of Anti-Vortex Film Cooling Designs at High Blowing Ratio
,”
ASME
Paper No. GT2008-50845.
9.
Haven
,
B. A.
,
Yamagata
,
D. K.
,
Kurosaka
,
M.
,
Yamawaki
,
S.
, and
Maya
,
T.
,
1997
, “
Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness
,”
ASME
Paper No. GT1997-45.
10.
Thurman
,
D.
,
Poinsatte
,
P.
,
Ameri
,
A.
,
Culley
,
D.
,
Raghu
,
S.
, and
Shyam
,
V.
,
2016
, “
Investigation of Spiral and Sweeping Holes
,”
ASME J. Turbomach.
,
138
(
9
), p.
091007
.
11.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2014
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
ASME
Paper No. GT2014-25992.
12.
Hossain
,
M. A.
,
Prenter
,
R.
,
Lundgreen
,
R.
,
Ameri
,
A.
,
Gregory
,
J.
, and
Bons
,
J. P.
,
2017
, “
Experimental and Numerical Investigation of Sweeping Jet Film Cooling
,”
ASME J. Turbomach.
,
140
(
3
), p.
031009
.
13.
Hossain
,
M. A.
,
Prenter
,
R.
,
Lundgreen
,
R.
,
Agricola
,
L. M.
,
Ameri
,
A.
,
Gregory
,
J.
, and
Bons
,
J. P.
,
2017
, “
Effect of Roughness on the Performance of Fluidic Oscillator
,”
AIAA
Paper No. 2017-0770.
14.
Cerretelli
,
C.
, and
Kirtley
,
K.
,
2009
, “
Boundary Layer Separation Control With Fluidic Oscillators
,”
ASME J. Turbomach.
,
131
(
4
), p.
041001
.
15.
Raman
,
G.
, and
Raghu
,
S.
,
2000
, “
Miniature Fluidic Oscillators for Flow and Noise Control—Transitioning From Macro to Micro Fluidics
,”
AIAA
Paper No. 2000-2554.
16.
Camci
,
C.
, and
Herr
,
F.
,
2002
, “
Forced Convection Heat Transfer Enhancement Using a Self-Oscillating Impinging Planar Jet
,”
ASME J. Turbomach.
,
124
(
4
), pp.
770
782
.
17.
Lundgreen
,
R.
,
Hossain
,
M. A.
,
Prenter
,
R.
,
Bons
,
J. P.
,
Gregory
,
J.
, and
Ameri
,
A.
,
2017
, “
Impingement Heat Transfer Characteristics of a Sweeping Jet
,”
AIAA
Paper No. 2017-1535.
18.
Sieber
,
M.
,
Ostermann
,
F.
,
Woszidlo
,
R.
,
Oberleithner
,
K.
, and
Paschereit
,
C. O.
,
2016
, “
Lagrangian Coherent Structure in the Flow Field of a Fluidic Oscillator
,”
Phys. Rev. Fluid
,
1
, p.
050509
.
19.
Schultz
,
D. L.
, and
Jones
,
T. V.
,
1973
, “
Heat Transfer Measurements in Short Duration Hypersonic Facilities
,” Advisory Group for Aerospace Research and Development, North Atlantic Treaty Organization, Brussels, Belgium, Report No. AGARD-AG-165.
20.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1989
,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
, New York, Chap. 3.
21.
Colban
,
W. W.
,
Gratton
,
A. A.
,
Thole
,
K. A.
, and
Haendler
,
M. M.
,
2005
, “
Heat Transfer and Film-Cooling Measurements on a Stator Vane With Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
128
(
1
), pp.
53
61
.
22.
Ramesh
,
S.
,
LeBlanc
,
C.
,
Narzary
,
D.
,
Ekkad
,
S.
, and
Anne Alvin
,
M.
,
2017
, “
Film Cooling Performance of Tripod Antivortex Injection Holes Over the Pressure and Suction Surfaces of a Nozzle Guide Vane
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
2
), p.
201006
.
You do not currently have access to this content.