The present paper describes the application of proper orthogonal decomposition (POD) to large eddy simulation (LES) of the T106A low-pressure-turbine profile with unsteady incoming wakes at two different flow conditions. Conventional data analysis applied to time averaged or phase-locked averaged flow fields is not always able to identify and quantify the different sources of losses in the unsteady flow field as they are able to isolate only the deterministic contribution. A newly developed procedure allows such identification of the unsteady loss contribution due to the migration of the incoming wakes, as well as to construct reduced order models that are able to highlight unsteady losses due to larger and/or smaller flow structures carried by the wakes in the different parts of the blade boundary layers. This enables a designer to identify the dominant modes (i.e., phenomena) responsible for loss, the associated generation mechanism, their dynamics, and spatial location. The procedure applied to the two cases shows that losses in the fore part of the blade suction side are basically unaffected by the flow unsteadiness, irrespective of the reduced frequency and the flow coefficient. On the other hand, in the rear part of the suction side, the unsteadiness contributes to losses prevalently due to the finer scale (higher order POD modes) embedded into the bulk of the incoming wake. The main difference between the two cases has been identified by the losses produced in the core flow region, where both the largest scale structures and the finer ones produces turbulence during migration. The decomposition into POD modes allows the quantification of this latter extra losses generated in the core flow region, providing further inputs to the designers for future optimization strategies.

References

References
1.
Stieger
,
R. D.
, and
Hodson
,
H. P.
,
2005
, “
The Unsteady Development of a Turbulent Wake Through a Downstream Low-Pressure Turbine Blade Passage
,”
ASME J. Turbomach.
,
127
(
2
), pp.
388
394
.
2.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
Bladerow Interactions, Transition, and High-Lift Aerofoils in Low-Pressure Turbines
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
71
98
.
3.
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2016
, “
Coherent Structures Formation During Wake-Boundary Layer Interaction on a LP Turbine Blade
,”
Flow, Turbul. Combust.
,
98
(1), pp.
1
25
.
4.
Wu
,
X.
, and
Durbin
,
P. A.
,
2001
, “
Evidence of Longitudinal Vortices Evolved From Distorted Wakes in a Turbine Passage
,”
J. Fluid Mech.
,
446
, pp.
199
228
.https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/evidence-of-longitudinal-vortices-evolved-from-distorted-wakes-in-a-turbine-passage/FE484A0D212982AB5947D60DA428B3C4
5.
Michelassi
,
V.
,
Wissink
,
J. G.
,
Fröhlich
,
J.
, and
Rodi
,
W.
,
2003
, “
Large-Eddy Simulation of Flow Around Low-Pressure Turbine Blade With Incoming Wakes
,”
AIAA J.
,
41
(
11
), pp.
2143
2156
.
6.
Sarkar
,
S.
, and
Voke
,
P.
,
2006
, “
Large-Eddy Simulation of Unsteady Surface Pressure Overa Low-Pressure Turbine Blade Due to Interactions of Passing Wakes and Inflexional Boundary Layer
,”
ASME J. Turbomach.
,
128
(
2
), pp.
221
231
.
7.
Michelassi
,
V.
,
Chen
,
L.-W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part II: Effect of Inflow Disturbances
,”
ASME J. Turbomach.
,
137
(
7
), p.
071005
.
8.
Praisner
,
T.
,
Clark
,
J.
,
Nash
,
T.
,
Rice
,
M.
, and
Grover
,
E.
,
2006
, “
Performance Impacts Due to Wake Mixing in Axial-Flow Turbomachinery
,”
ASME
Paper No. GT2006-90666.
9.
Michelassi
,
V.
,
Chen
,
L.
,
Pichler
,
R.
,
Sandberg
,
R.
, and
Bhaskaran
,
R.
,
2016
, “
High-Fidelity Simulations of Low-Pressure Turbines: Effect of Flow Coefficient and Reduced Frequency on Losses
,”
ASME J. Turbomach.
,
138
(
11
), p.
111006
.
10.
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
,
Bertini
,
F.
, and
Michelassi
,
V.
,
2017
, “
Accurate Estimation of Profile Losses and Analysis of Loss Generation Mechanisms in a Turbine Cascade
,”
ASME J. Turbomach.
,
139
(
12
), p.
121007
.
11.
Wu
,
X.
,
Jacobs
,
R. G.
,
Hunt
,
J. C. R.
, and
Durbin
,
P. A.
,
1999
, “
Simulation of Boundary Layer Transition Induced by Periodically Passing Wakes
,”
J. Fluid Mech.
,
398
, pp.
109
153
.
12.
Nagabhushana Rao
,
V.
,
Tucker
,
P.
,
Jefferson-Loveday
,
R.
, and
Coull
,
J.
,
2013
, “
Large Eddy Simulations in Low-Pressure Turbines: Effect of Wakes at Elevated Free-Stream Turbulence
,”
Int. J. Heat Fluid Flow
,
43
, pp.
85
95
.
13.
Coull
,
J. D.
, and
Hodson
,
H. P.
,
2011
, “
Unsteady Boundary-Layer Transition in Low-Pressure Turbines
,”
J. Fluid Mech.
,
681
, pp.
370
410
.
14.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
15.
Hussain
,
A.
, and
Reynolds
,
W.
,
1970
, “
The Mechanics of an Organized Wave in Turbulent Shear Flow
,”
J. Fluid Mech.
,
41
(
2
), pp.
241
258
.
16.
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2017
, “
Analysis of the Reynolds Stress Component Production in a Laminar Separation Bubble
,”
Int. J. Heat Fluid Flow
,
64
, pp.
112
119
.
17.
Moore
,
J.
,
Shaffer
,
D.
, and
Moore
,
J.
,
1987
, “
Reynolds Stresses and Dissipation Mechanisms Downstream of a Turbine Cascade
,”
ASME J. Turbomach.
,
109
(
2
), pp.
258
267
.
18.
Perrin
,
R.
,
Braza
,
M.
,
Cid
,
E.
,
Cazin
,
S.
,
Barthet
,
A.
,
Sevrain
,
A.
,
Mockett
,
C.
, and
Thiele
,
F.
,
2007
, “
Obtaining Phase Averaged Turbulence Properties in the Near Wake of a Circular Cylinder at High Reynolds Number Using POD
,”
Exp. Fluids
,
43
(
2–3
), pp.
341
355
.
19.
Sarkar
,
S.
,
2008
, “
Identification of Flow Structures on a LP Turbine Blade Due to Periodic Passing Wakes
,”
ASME J. Fluids Eng.
,
130
(
6
), p.
061103
.
20.
Romero Martinez
,
S. R.
, and
Gross
,
A.
,
2017
, “
Numerical Investigation of Low Reynolds Number Flow in Turbine Passage
,”
AIAA
Paper No. 2017-1456.
21.
Gross
,
A.
,
Marks
,
C.
, and
Sondergaard
,
R.
,
2017
, “
Numerical Simulations of Active Flow Control for Highly Loaded Low-Pressure Turbine Cascade
,”
AIAA
Paper No. 2017-1460.
22.
Sandberg
,
R. D.
,
Michelassi
,
V.
,
Pichler
,
R.
,
Chen
,
L.
, and
Johnstone
,
R.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part I: Methodology
,”
ASME J. Turbomach.
,
137
(
5
), p.
051011
.
23.
Kim
,
J. W.
, and
Sandberg
,
R. D.
,
2012
, “
Efficient Parallel Computing With a Compact Finite Difference Scheme
,”
Comput. Fluids
,
58
, pp.
70
87
.
24.
Kennedy
,
C. A.
,
Carpenter
,
M. H.
, and
Lewis
,
R. M.
,
2000
, “
Low-Storage, Explicit Runge–Kutta Schemes for the Compressible Navier–Stokes Equations
,”
Appl. Numer. Math.
,
35
(
3
), pp.
177
219
.
25.
Kennedy
,
C. A.
, and
Gruber
,
A.
,
2008
, “
Reduced Aliasing Formulations of the Convective Terms Within the Navier–Stokes Equations for a Compressible Fluid
,”
J. Comput. Phys.
,
227
(
3
), pp.
1676
1700
.
26.
Wheeler
,
A. P. S.
,
Sandberg
,
R. D.
,
Sandham
,
N. D.
,
Pichler
,
R.
,
Michelassi
,
V.
, and
Laskowski
,
G.
,
2016
, “
Direct Numerical Simulations of a High-Pressure Turbine Vane
,”
ASME J. Turbomach.
,
138
(
7
), p.
071003
.
27.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.
28.
Schlanderer
,
S. C.
,
Weymouth
,
G. D.
, and
Sandberg
,
R. D.
,
2017
, “
The Boundary Data Immersion Method for Compressible Flows With Application to Aeroacoustics
,”
J. Comput. Phys.
,
333
, pp.
440
461
.
29.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures—Part I
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.
30.
Perrin
,
R.
,
Cid
,
E.
,
Cazin
,
S.
,
Sevrain
,
A.
,
Braza
,
M.
,
Moradei
,
F.
, and
Harran
,
G.
,
2007
, “
Phase-Averaged Measurements of the Turbulence Properties in the Near Wake of a Circular Cylinder at High Reynolds Number by 2C-PIV and 3C-PIV
,”
Exp. Fluids
,
42
(
1
), pp.
93
109
.
31.
Borée
,
J.
,
2003
, “
Extended Proper Orthogonal Decomposition: A Tool to Analyse Correlated Events in Turbulent Flows
,”
Exp. Fluids
,
35
(
2
), pp.
188
192
.
32.
Lengani
,
D.
,
Simoni
,
D.
,
Pichler
,
R.
,
Sandberg
,
R.
,
Michelassi
,
V.
, and
Bertini
,
F.
,
2018
, “
Identification and Quantification of Losses in a LPT Cascade by POD Applied to LES Data
,”
Int. J. Heat Fluid Flow
,
70
, pp.
28
40
.
33.
Hanjalić
,
K.
, and
Launder
,
B.
,
2011
,
Modelling Turbulence in Engineering and the Environment: Second-Moment Routes to Closure
,
Cambridge University Press, Cambridge, UK
.
34.
Leschziner
,
M.
,
2015
,
Statistical Turbulence Modelling for Fluid Dynamics—demystified: An Introductory Text for Graduate Engineering Students
,
World Scientific
, London.
35.
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Guida
,
R.
,
2016
, “
Turbulence Production, Dissipation and Length Scales in Laminar Separation Bubbles
,”
Engineering Turbulence Modelling and Measurements (ETMM11)
, Palermo, Italy, Sept. 21–23, pp.
1
6
.
36.
Gompertz
,
K. A.
, and
Bons
,
J. P.
,
2011
, “
Combined Unsteady Wakes and Active Flow Control on a Low-Pressure Turbine Airfoil
,”
AIAA J. Propul. Power
,
27
(
5
), pp.
990
1000
.
37.
Legrand
,
M.
,
Nogueira
,
J.
, and
Lecuona
,
A.
,
2011
, “
Flow Temporal Reconstruction From Non-Time-Resolved Data—Part I: Mathematic Fundamentals
,”
Exp. Fluids
,
51
(
4
), pp.
1047
1055
.
38.
Legrand
,
M.
,
Nogueira
,
J.
,
Tachibana
,
S.
,
Lecuona
,
A.
, and
Nauri
,
S.
,
2011
, “
Flow Temporal Reconstruction From Non-Time-Resolved Data—Part II: Practical Implementation, Methodology Validation, and Applications
,”
Exp. Fluids
,
51
(
4
), pp.
861
870
.
39.
Yarusevych
,
S.
, and
Kotsonis
,
M.
,
2017
, “
Effect of Local DBD Plasma Actuation on Transition in a Laminar Separation Bubble
,”
Flow, Turbul. Combust.
,
98
(
1
), pp.
195
216
.
40.
Wen
,
X.
,
Tang
,
H.
, and
Duan
,
F.
,
2016
, “
Interaction of In-Line Twin Synthetic Jets With a Separated Flow
,”
Phys. Fluids
,
28
(
4
), p.
043602
.
41.
Doering
,
C. R.
, and
Gibbon
,
J. D.
,
1995
,
Applied Analysis of the Navier–Stokes Equations
, Vol.
12
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.