Sand ingestion and deposition in gas turbine engine components can lead to several operational hazards. This paper discusses a physics-based model for modeling the impact, deposition, and sticking of sand particles to surfaces. The collision model includes both normal and tangential components of impact. The normal collision model divides the impact process into three stages, the elastic stage, the elastic–plastic stage, and full plastic stage, and the recovery process is assumed to be fully elastic. The adhesion loss in the recovery stage is described using Timoshenko's model and Tsai's model, and shows that the two models are consistent under certain conditions. Plastic deformation losses of surface asperities are also considered for particle–wall collisions. The normal impact model is supplemented by an impulse-based tangential model, which includes both sliding and rolling frictions. Sand properties are characterized by size and temperature dependencies. The predicted coefficient of restitution (COR) of micron-sized sand particles is in very good agreement with experimental data at room temperature and at higher temperatures from 1073 K to 1340 K. The predicted COR decreases rapidly at temperatures above 1340 K. There is a strong interplay between the size-dependent properties of micron sand particles and the temperature dependency of yield stress on the collision and deposition characteristics. This is the first physics-based high temperature model including translation and rotation of micron-sized sand particles with sliding and rolling modes in the gas turbine literature.

References

References
1.
Wu
,
C. Y.
,
Thornton
,
C.
, and
Li
,
L. Y.
,
2003
, “
Coefficients of Restitution for Elastoplastic Oblique Impacts
,”
Adv. Powder Technol.
,
14
(
4
), pp.
435
448
.
2.
Chen
,
S.
,
Li
,
S.
, and
Yang
,
M.
,
2015
, “
Sticking/Rebound Criterion for Collisions of Small Adhesive Particles: Effects of Impact Parameter and Particle Size
,”
Powder Technol.
,
274
, pp.
431
440
.
3.
Walsh
,
W. S.
,
Thole
,
K. A.
, and
Joe
,
C.
, “
Effects of Sand Ingestion on the Blockage of Film-Cooling Holes
,”
ASME
Paper No. GT2006-90067.
4.
Bonilla
,
C.
,
Clum
,
C.
,
Lawrence
,
M.
,
Casaday
,
B.
, and
Bons
,
J. P.
, “
The Effect of Film Cooling on Nozzle Guide Vane Deposition
,”
ASME
Paper No. GT2013-95081.
5.
Barker
,
B. J.
,
Hsu
,
K.
,
Varney
,
B.
,
Boulanger
,
A.
,
Hutchinson
,
J.
, and
Ng
,
W. F.
,
2017
, “
An Experiment-Based Sticking Model for Heated Sand
,”
ASME
Paper No. GT2017-64421.
6.
Boulanger
,
J.
,
Patel
,
H. D.
,
Hutchinson
,
J.
,
DeShong
,
W.
,
Xu
,
W.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2016
, “
Preliminary Experimental Investigation of Initial Onset of Sand Deposition in the Turbine Section of Gas Turbines
,”
ASME
Paper No. GT2016-56059.
7.
Boulanger
,
A.
,
Hutchinson
,
J.
,
Ng
,
W. F.
,
Ekkad
,
S. V.
,
Keefe
,
M. J.
, and
Xu
,
W.
,
2017
, “
Experimental Based Empirical Model of the Initial Onset of Sand Deposits on Hastelloy-X From 1000 °C to 1100 °C Using Particle Tracking
,”
ASME
Paper No. GT2017-64480.
8.
Sreedharan
,
S. S.
, and
Tafti
,
D. K.
,
2011
, “
Composition Dependent Model for the Prediction of Syngas Ash Deposition in Turbine Gas Hot Path
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
201
211
.
9.
Brach
,
R.
, and
Dunn
,
P.
,
1992
, “
A Mathematical Model of the Impact and Adhesion of Microspheres
,”
Aerosol Sci. Technol.
,
16
(
1
), pp.
51
64
.
10.
El-Batsh
,
H.
, and
Haselbacher
,
H.
,
2002
, “
Numerical Investigation of the Effect of Ash Particle Deposition on the Flow Field Through Turbine Cascades
,”
ASME
Paper No. GT-2002-30600.
11.
Ai
,
W. G.
, and
Fletcher
,
T. H.
,
2011
, “
Computational Analysis of Conjugate Heat Transfer and Particulate Deposition on a High Pressure Turbine Vane
,”
ASME J. Turbomach.
,
134
(
4
), p. 041020.
12.
Singh
,
S.
, and
Tafti
,
D. K.
, “
Predicting the Coefficient of Restitution for Particle Wall Collisions in Gas Turbine Components
,”
ASME
Paper No. GT2013-095623.
13.
Singh
,
S.
, and
Tafti
,
D. K.
, 2015, “
Prediction of Sand Deposition in a Two-pass Internal Cooling Duct
,”
ASME
Paper No. GT 2015-44103.
14.
Bons
,
J. P.
,
Prenter
,
R.
, and
Whitaker
,
S.
, 2016, “
A Simple Physics-Based Model for Particle Rebound and Deposition in Turbomachinery
,”
ASME
Paper No. GT2016-56697.
15.
Yu
,
K.
, and
Tafti
,
D.
,
2016
, “
Impact Model for Micrometer-sized Sand Particles
,”
Powder Technol.
,
294
, pp.
11
21
.
16.
Stronge
,
W. J.
,
2000
,
Impact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
17.
Yu
,
K.
,
Elghannay
,
H. A.
, and
Danesh
,
T.
,
2017
, “
An Impulse Based Model for Spherical Particle Collisions With Sliding and Rolling
,”
Powder Technol.
,
319
, pp.
102
116
.
18.
Dowd
,
C.
,
Tafti
,
D.
, and
Yu
,
K.
,
2017
, “
Sand Transport and Deposition in Rotating Two-Passed Ribbed Duct With Coriolis and Centrifugal Buoyancy Forces at Re=100, 000
,”
ASME
Paper No. GT2017-63167.
19.
Polian
,
A.
,
Vo-Thanh
,
D.
, and
Richet
,
P.
,
2002
, “
Elastic Properties of a-SiO2 Up to 2300 K From Brillouin Scattering Measurements
,”
Europhys. Lett.
,
57
(
3
), pp.
375
381
.
20.
Faoite
,
D. D.
,
Browne
,
D. J.
,
Chang-Díazm
,
F. R.
, and
Stanton
,
F. R.
,
2012
, “
A Review of the Processing, Composition, and Temperature-Dependent Mechanical and Thermal Properties of Dielectric Technical Ceramics
,”
J. Mater. Sci.
,
47
, pp.
4211
4235
.
21.
Sommerfeld
,
M.
, and
Huber
,
N.
,
1999
, “
Experimental Analysis and Modeling of Particle-Wall Collisions
,”
Int. J. Multiphase Flow
,
25
(
6–7
), pp.
1457
1489
.
22.
Tsai
,
C. J.
,
Pui
,
D. Y. H.
, and
Liu
,
B. Y. H.
,
1990
, “
Capture and Rebound of Small Particles Upon Impact With Solid Surfaces
,”
Aerosol Sci. Technol.
,
12
(
3
), pp.
497
507
.
23.
Lifshitz
,
J. M.
, and
Kolsky
,
H.
,
1964
, “
Some Experiments on an Elastic Rebound
,”
J. Mech. Phys. Solids
,
12
(
1
), pp.
35
43
.
24.
Timoshenko
,
S.
, and
Goodier
,
J. N.
,
1951
,
Theory of Elasticity
,
2nd ed.
,
McGraw-Hill
,
New York
.
25.
Penumadu
,
D.
,
Dutta
,
A. K.
,
Luo
,
X.
, and
Thomas
,
K. G.
,
2009
, “
Nano and Neutron Science Applications for Geomechanics
,”
KSCE J. Civil Eng.
,
13
(
4
), pp.
233
242
.
26.
Portnikov
,
D.
, and
Kalman
,
H.
,
2014
, “
Determination of Elastic Properties of Particles Using Single Particle Compression Test
,”
Powder Technol.
,
268
, pp.
244
252
.
27.
Reagle
,
C. J.
,
Delimont
,
J. M.
,
Ng
,
W. F.
,
Ekkad
,
S. V.
, and
Rajendran
,
V. P.
,
2013
, “
Measuring the Coefficient of Restitution of High Speed Microparticle Impacts Using a PTV and CFD Hybrid Technique
,”
Meas. Sci. Technol.
,
24
(
10
), p.
105303
.
28.
Kim
,
O. V.
, and
Dunn
,
P. F.
,
2007
, “
A Microsphere-Surface Impact Model for Implementation in Computational Fluid Dynamics
,”
J. Aerosol Sci.
,
38
(
5
), pp.
532
549
.
29.
Delimont
,
J. M.
,
2014
, “
Experimental Investigation of Temperature Effects on Microparticle Sand Rebound Characteristics at Gas Turbine Representative Conditions
,”
Ph.D. thesis
, Virginia Polytechnic Institute and State University, Blacksburg, VA.https://vtechworks.lib.vt.edu/handle/10919/47805
30.
Lenard
,
J. G.
, and
Kalpakjian
,
S.
,
1991
, “
The Effect of Temperature on the Coefficient of Friction in Flat Rolling
,”
CIRP Ann.
,
40
(
1
), pp.
223
226
.
31.
Tadić
,
B.
,
Kočović
,
V.
,
Matejić
,
M.
,
Brzaković
,
L.
,
Mijatović
,
M.
, and
Vukelić
,
Đ.
,
2016
, “
Static Coefficient of Rolling Friction at High Contact Temperatures and Various Contact Pressure
,”
Tribol. Ind.
,
38
(
1
), pp.
83
89
.https://www.researchgate.net/publication/301043681_Static_Coefficient_of_Rolling_Friction_at_High_Contact_Temperatures_and_Various_Contact_Pressure
32.
Delimont
,
J. M.
,
Murdock
,
M. K.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2015
, “
Effect of Temperature on Microparticle Rebound Characteristics at Constant Impact Velocity–Part I
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
112604
.
33.
Delimont
,
J. M.
,
Murdock
,
M. K.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2015
, “
Effect of Temperature on Microparticle Rebound Characteristics at Constant Impact Velocity–PartII
,”
ASME J. Eng. Gas Turbines Power
,
137
(11), p.
112604
.
You do not currently have access to this content.