This investigation represents work on a model to determine heat flows on turbochargers. Recently, a power-based method has been developed to compare adiabatic and hot gas tests from radial turbines and compressors. Moreover, this method has shown the ability to correct standard measurements in terms of heat flows. In this investigation, a wastegate turbocharger has been investigated from a small gasoline engine. For validation purposes of the isentropic efficiencies, a conjugate-heat-transfer (CHT) simulation has been carried out on the turbine. Results have shown that isentropic efficiencies fit well for values of turbine inlet temperatures of 600 °C between corrected data and the simulation. For other temperatures, the differences between the determined values and CHT are greater. The differences rise with higher temperatures generally. So, the objective of the investigation is to improve the existing method for determining turbocharger heat transfers. Hence, an additional dependency of turbine inlet temperatures has been implemented in the approach and tested for T3 = 400 °C, 600 °C, 800 °C, and 950 °C. The modification has shown better results and smaller differences to CHT simulation. Especially, at low speeds where the former approach has had big differences, the modification improves the distribution for the investigated turbine inlet temperatures.

References

References
1.
Malobabic
,
M.
,
1989
, “
Das Betriebsverhalten Leitschaufel- Und Bypassgeregelter PKW-Abgasturbolader
,” Ph.D. dissertation, University of Hannover, Hannover, Germany.
2.
Baar
,
R.
,
Biet
,
C.
,
Boxberger
,
V.
,
Mai
,
H.
, and
Zimmermann
,
R.
,
2013
, “
Moeglichkeiten Der Direkten Bestimmung Des Isentropen Turbinenwirkungsgrads
,” Aufladetechnische Konferenz, Dresden, Germany.
3.
Shaaban
,
S.
,
2004
, “
Experimental Investigation and Extended Simulation of Turbocharger Non-Adiabatic Performance
,”
Ph.D. dissertation
, University of Hannover, Hannover, Germany.https://d-nb.info/974988219/34
4.
Savic
,
B.
,
Zimmermann
,
R.
,
Jander
,
B.
, and
Baar
,
R.
,
2017
, “
New Phenomenological and Power-Based Approach for Determining the Heat Flows of a Turbocharger Directly From Hot Gas Test Data
,” 12th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics (
ETC
), Stockholm, Sweden, Apr. 3–7, Paper No. ETC2017-258.https://www.euroturbo.eu/paper/ETC2017-258.pdf
5.
Baar
,
R.
,
Biet
,
C.
,
Boxberger
,
V.
,
Mai
,
H.
, and
Zimmermann
,
R.
,
2014
, “
New Evaluation of Turbocharger Components Based on Turbine Outlet Temperature Measurements in Adiabatic Conditions
,” ISROMAC-15, Honolulu, HI, Feb. 24–28.
6.
Baar
,
R.
,
Biet
,
C.
, and
Zimmermann
,
R.
,
2015
, “
Experimental Modelling of Adiabatic Turbocharger Conditions to Investigate the Isentropic Turbine Efficiency
,” Engine Processes, Berlin.
7.
Zimmermann
,
R.
,
Baar
,
R.
, and
Biet
,
C.
,
2016
, “
Determination of the Isentropic Turbine Efficiency Due to Adiabatic Measurements and the Validation of the Conditions Via a New Criterion
,”
12 International Conference on Turbochargers and Turbocharging
, London, May 17–18.
8.
Gao
,
X.
,
Savic
,
B.
, and
Baar
,
R.
,
2018
, “
CHT-Simulation on a Turbocharger Turbine With Resolution of the Ambient Convective Heat Flow
,”
13th International Conference on Turbochargers and Turbocharging
, London, UK, May 16–17, pp. 389–405.
9.
Cormerais
,
M.
,
Hetet
,
J. F.
,
Chessé
,
P.
, and
Maiboom
,
A.
,
2006
, “
Heat Transfers Characterisations in a Turbocharger: Experiments and Correlations
,”
ASME
Paper No. ICES2006-1324.
10.
Cormerais
,
M.
,
Chessé
,
P.
, and
Hetet
,
J. F.
,
2009
, “
Turbocharger Heat Transfer Modeling Under Steady and Transient Conditions
,”
Int. J. Thermodyn.
,
12
(
4
), pp.
193
202
.https://www.researchgate.net/publication/42539971_Turbocharger_Heat_Transfer_Modeling_Under_Steady_and_Transient_Conditions
11.
Serrano
,
J. R.
,
Olmeda
,
P.
,
Arnau
,
F. J.
,
Dombrovsky
,
A.
, and
Smith
,
L.
,
2015
, “
Analysis and Methodology to Characterize Heat Transfer Phenomena in Automotive Turbochargers
,”
ASME J. Eng. Gas Turbines Power
,
137
(
2
), p.
021901
.
12.
Burke
,
R. D.
,
Olmeda
,
P.
,
Arnau
,
F. J.
, and
Reyes-Belmonte
,
M. A.
,
2014
, “
Modelling of Turbocharger Heat Transfer Under Stationary and Transient Conditions
,”
IMechE-11th International Conference on Turbochargers and Turbocharging
, London, May 13–14, pp.
103
112
.
13.
Baines
,
N.
,
Wygant
,
K. D.
, and
Dris
,
A.
,
2009
, “
The Analysis of Heat Transfer in Automotive Turbochargers
,”
ASME
Paper No. GT2009-59353.
14.
Baar
,
R.
,
Savic
,
B.
, and
Zimmermann
,
R.
,
2017
, “
Ein Neues Verfahren Zur Bedatung Von Aerodynamischen, Thermischen Und Mechanischen Turboladermodellen
,”
Der Verbrennungsmotor - Ein Antrieb Mit Vergangenheit Und Zukunft
,
Springer Vieweg
,
Wiesbaden
, Germany, pp.
37
59
.
15.
Zimmermann
,
R.
,
Savic
,
B.
, and
Baar
,
R.
,
2017
, “
Erweiterte Turboladermodellbildung Mittels Heißgasprüfstandsdaten, Eine Retrospektive Und Ausblickeines Innovativen Ansatzes
,” Aufladetechnische Konferenz, Dresden, Germany.
16.
SAE
,
1995
, “
Turbocharger Nomenclature and Terminology
,” Society of Automotive Engineers, Warrendale, PA, Standard No.
J922_199506
.
17.
SAE
,
1995
, “
Turbocharger Gas Stand Test Code
,” Society of Automotive Engineers, Warrendale, PA, Standard No.
J1826_199503
.
You do not currently have access to this content.