The ingestion and deposition of solid particulates within gas turbine engines has become a very significant concern for both designers and operators in recent times. Frequently aircraft are operated in environments where sand, ash, dust, and salt are present, which can drive damage mechanisms from long term component degradation to in-flight flame-out. Experiments are presented to assess deposition characteristics of sodium chloride (NaCl) at gas turbine secondary air system temperature conditions in horizontal pipe flow. Monodisperse NaCl particles were generated in the size range 2.0–6.5 µm, with gas temperatures 390–480 °C, and metal temperatures 355–730 °C. Two engine-representative surface roughnesses were assessed. An experimental technique for the measurement of deposited NaCl based on solution conductivity was developed and validated. Experiments were carried out under isothermal and nonisothermal/thermophoretic conditions. An initial experimental campaign was conducted under ambient and isothermal conditions; high temperature isothermal results showed good similarity. Under thermophoretic conditions, deposition rates varied by up to several orders of magnitude compared to isothermal rates.

References

References
1.
Cardwell
,
N.
,
Thole
,
K.
, and
Burd
,
S.
,
2010
, “
Investigation of Sand Blocking Within Impingement and Film-Cooling Holes
,”
ASME J. Turbomach.
,
132
(
2
), p.
021020
.
2.
Wylie
,
S.
,
Bucknell
,
A.
,
Forsyth
,
P.
,
McGilvray
,
M.
, and
Gillespie
,
D.
,
2017
, “
Reduction in Flow Parameter Resulting From Volcanic Ash Deposition in Engine-Representative Cooling Passages
,”
ASME J. Turbomach.
,
139
(
3
), p.
031008
.
3.
Suman
,
A.
,
Kurz
,
R.
,
Aldi
,
N.
,
Morini
,
M.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P.
,
2014
, “
Quantitative CFD Analyses of Particle Deposition on a Subsonic Axial Compressor Blade—Part I: Particle Zones Impact
,”
ASME J. Turbomach.
,
137
(
2
), p.
021009
.
4.
Prenter
,
R.
,
Ameri
,
A.
, and
Bons
,
J.
,
2016
, “
Deposition of a Cooled Nozzle Guide Vane With Nonuniform Inlet Temperatures
,”
ASME J. Turbomach.
,
138
(
10
), p.
101005
.
5.
Gosman
,
A.
, and
Ionnides
,
E.
,
1983
, “
Aspects of Computer Simulation of Liquid-Fuelled Combustors
,”
J. Energy
,
7
(
6
), pp.
482
490
.
6.
Tian
,
L.
, and
Ahmadi
,
G.
,
2006
, “
Particle Deposition in Turbulent Duct Flows—Comparisons of Different Model Predictions
,”
J. Aerosol Sci.
,
38
(
4
), pp.
377
397
.
7.
Dehbi
,
A.
,
2008
, “
Turbulent Particle Dispersion in Arbitrary Wall-Bounded Geometries: A Coupled CFD-Langevin-Equation Based Approach
,”
Int. J. Multiphase Flow
,
34
(
9
), pp.
819
828
.
8.
Forsyth
,
P.
,
Gillespie
,
D.
, and
McGilvray
,
M.
, “
Validation and Assessment of the Continuous Random Walk Model for Particle Deposition in Gas Turbine Engines
,”
ASME
Paper No. GT2016-57332.
9.
Dehbi
,
A.
,
2010
, “
Validation Against DNS Statistics of the Normalized Langevin Model for Particle Transport in Turbulent Channel Flows
,”
Powder Technol.
,
200
(
1–2
), pp.
60
68
.
10.
Healy
,
D.
, and
Young
,
J.
,
2010
, “
An Experimental and Theoretical Study of Particle Deposition Due to Thermophoresis and Turbulence in an Annular Flow
,”
Int. J. Multiphase Flow
,
36
(
11–12
), pp.
870
881
.
11.
Young
,
J.
, and
Leeming
,
A.
,
1997
, “
A Theory of Particle Deposition in Turbulent Pipe Flow
,”
J. Fluid Mech.
,
340
, pp.
129
159
.
12.
Friedlander
,
S.
, and
Johnstone
,
H.
,
1957
, “
Deposition of Suspended Particles From Turbulent Gas Streams
,”
Ind. Eng. Chem.
,
49
(
7
), pp.
1151
1156
.
13.
Sehmel
,
G.
,
1968
, “
Aerosol Deposition From Turbulent Airstreams in Vertical Conduits
,” AEC Research and Development Report, Pacific Northwest National Laboratory, Richland, WA, Report No. BNWL-578.
14.
Liu
,
B.
, and
Agarwal
,
J.
,
1974
, “
Experimental Observation of Aerosol Deposition in Turbulent Flow
,”
J. Aerosol Sci.
,
5
(
2
), pp.
145
155
.
15.
Kvasnak
,
W.
,
Ahamadi
,
G.
,
Bayer
,
R.
, and
Gaynes
,
M.
,
1993
, “
Experimental Investigation of Dust Particle Deposition in a Turbulent Channel Flow
,”
J. Aerosol Sci.
,
34
(
6
), pp.
795
815
.
16.
Montgomery
,
T.
, and
Corn
,
M.
,
1970
, “
Aerosol Deposition in a Pipe With Turbulent Airflow
,”
Aerosol Sci.
,
1
(
3
), pp.
185
213
.
17.
Sippola
,
M.
, and
Nazaroff
,
W.
,
2004
, “
Experiments Measuring Particle Deposition From Fully Developed Turbulent Flow in Ventilation Ducts
,”
Aerosol Sci. Technol.
,
38
(
9
), pp.
914
925
.
18.
Lundgreen
,
R.
,
Sacco
,
C.
,
Prenter
,
R.
, and
Bons
,
J.
,
2016
, “
Temperature Effects on Nozzle Guide Vane Deposition in a New Turbine Cascade Rig
,”
ASME
Paper No. GT2016-57560.
19.
Schiller
,
L.
, and
Naumann
,
A.
,
1935
, “
A Drag Coefficient Correlation
,”
Z. Des Vereins Deutscher Ingenieure
,
77
, pp.
318
320
.
20.
Young
,
J.
,
2011
, “
Thermophoresis of a Spherical Particle: Reassessment, Clarification, and New Analysis
,”
Aerosol Sci. Technol.
,
45
(
8
), pp.
927
948
.
21.
Sagot
,
B.
,
2013
, “
Thermophoresis for Spherical Particles
,”
J. Aerosol Sci.
,
65
(
1
), pp.
10
20
.
22.
Talbot
,
L.
,
Cheng
,
R.
,
Schefer
,
R.
, and
Willis
,
D.
,
1980
, “
Thermophoresis of Particles in a Heated Boundary Layer
,”
J. Fluid Mech.
,
101
(
04
), pp.
737
758
.
23.
Kline
,
S. J.
, and
McClintock
,
F.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
24.
Sehmel
,
G.
,
1972
, “
Particle Eddy Diffusivities and Deposition Velocities for Isothermal Flow and Smooth Surfaces
,”
Aerosol Sci.
,
4
(
1
), pp.
125
138
.
25.
Reagle
,
C.
,
Delimont
,
J.
,
Ng
,
W.
, and
Ekkad
,
S.
,
2014
, “
Study of Microparticle Rebound Characteristics Under High Temperature Conditions
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
011501
.
You do not currently have access to this content.