Abstract

As the load of the turbine components of aircraft engines continuously increases, shock loss becomes the dominant factor of turbine stage loss and has become a hot topic. The Schlieren technique is one of the few effective experimental methods to observe and study shock wave and, thus, has been widely used. Nevertheless, limited by camera accuracy and computer image processing technology, quantitative schlieren analysis methods were difficult to achieve in engineering applications. Fortunately, several quantitative schlieren methods have been developed with the help of new digital technology. Applying the schlieren technique to the highly loaded turbine cascade test is of great significance to the study of shock wave in highly loaded turbine cascades. In this paper, the results of the quantitative density field and shock intensity and loss in the cascade are obtained by using a double-reflection-type monochrome schlieren device. The boundary condition of the density field is obtained by pressure test, and matlab software is used as image processing calculation tool. The quantitative results of this paper prove the feasibility of applying quantitative schlieren method to highly loaded turbine cascade tests. Also, the implemented image processing method and density boundary condition acquisition method are suitable and convenient for cascade flow and shock measurement tests.

References

References
1.
Yasa
,
T.
,
Paniagua
,
G.
, and
Bussolin
,
A.
,
2007
, “
Performance Analysis of a Transonic High-Pressure Turbine
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
221
(
6
), pp.
769
778
. 10.1243/09576509JPE467
2.
Dorney
,
D. J.
,
Griffin
,
L. W.
, and
Huber
,
F. W.
,
2000
, “
A Study of the Effects of Tip Clearance in a Supersonic Turbine
,”
ASME J. Turbomach.
,
122
(
4
), pp.
674
683
. 10.1115/1.1290400
3.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomac.
,
115
(
4
), pp.
621
656
. 10.1115/1.2929299
4.
Hama
,
F. R.
,
1968
, “
Experimental Studies on the Lip Shock
,”
AIAA J.
,
6
(
2
), pp.
212
219
. 10.2514/3.4480
5.
Sieverding
,
C. H.
,
Stanislas
,
M.
, and
Snoeck
,
J.
,
1980
, “
The Base Pressure Problem in Transonic Turbine Cascades
,”
ASME J. Eng. Power
,
102
(
3
), pp.
711
718
. 10.1115/1.3230330
6.
Doorly
,
D. J.
, and
Oldfield
,
M. L. G.
,
1985
, “
Simulation of the Effects of Shock Wave Passing on a Turbine Rotor Blade
,”
ASME J. Eng. Gas Turbines Power
,
107
(
4
), pp.
998
1006
. 10.1115/1.3239847
7.
Sonoda
,
T.
,
Arima
,
T.
,
Olhofer
,
M.
,
Sendhoff
,
B.
,
Kost
,
F.
, and
Giess
,
P.
,
2004
, “
A Study of Advanced High-Loaded Transonic Turbine Airfoils
,”
ASME J. Turbomac.
,
128
(
4
), pp.
650
657
. 10.1115/1.2221325
8.
Lei
,
X.
,
Qi
,
M.
,
Sun
,
H.
, and
Hu
,
L.
,
2017
, “
Investigation on the Shock Control Using Grooved Surface in a Linear Turbine Nozzle
,”
ASME J. Turbomach.
,
139
(
12
), p.
121008
. 10.1115/1.4037860
9.
Lei
,
Z.
,
Ma
,
C.
,
Zhang
,
C.
,
Jiang
,
Z.
, and
Gu
,
Y.
,
2005
, “
Shock Wave Image Measurement and Processing of 2-D Cascade Flow Field
,”
Meas. Control Technol.
,
24
(
5
), pp.
27
29
. 10.19708/j.ckjs.2005.05.008
10.
Zhou
,
K.
,
2014
, “
Investigations of Aerodynamic Design Techniques for Counter-Rotating Turbine in Adaptive Cycle Engine
,” Ph.D. thesis,
Beihang University
,
Beijing
.
11.
Hargather
,
M. J.
, and
Settles
,
G. S.
,
2012
, “
A Comparison of Three Quantitative Schlieren Techniques
,”
Opt. Lasers Eng.
,
50
(
1
), pp.
8
17
. 10.1016/j.optlaseng.2011.05.012
12.
Settles
,
G. S.
, and
Hargather
,
M. J.
,
2017
, “
A Review of Recent Developments in Schlieren and Shadowgraph Techniques
,”
Meas. Sci. Technol.
,
28
(
4
), p.
042001
. 10.1088/1361-6501/aa5748
13.
Zhao
,
X.
,
Yue
,
Y.
,
Yang
,
Y.
,
Xiao
,
P.
,
He
,
J.
, and
Chen
,
W.
,
2017
, “
Quantitative Schlieren System and Image Processing Method Applicable to the Measurement of Stem Temperature Field
,”
Proc. CSEE
,
37
(
23
), pp.
7047
7057
. 10.13334/j.0258-8013.pcsee.161983
14.
Howes
,
W. L.
,
1984
, “
Rainbow Schlieren and Its Applications
,”
Appl. Opt.
,
23
(
14
), pp.
2449
2460
. 10.1364/AO.23.002449
15.
Jiang
,
G.
,
Hong
,
Y.
,
Ye
,
J.
, and
Wu
,
W.
,
2012
, “
Experimental Investigation of the Quantitative Measurement by Rainbow Schlieren
,”
J. Acad. Equip. Command Technol.
,
23
(
1
), pp.
127
131
.
16.
Raffel
,
M.
,
Richard
,
H.
, and
Meier
,
G.
,
2000
, “
On the Applicability of Background Oriented Optical Tomography for Large Scale Aerodynamic Investigations
,”
Exp. Fluids
,
28
(
5
), pp.
477
481
. 10.1007/s003480050408
17.
Richard
,
H.
, and
Raffel
,
M.
,
2001
, “
Principle and Applications of the Background Oriented Schlieren (BOS) Method
,”
Meas. Sci. Technol.
,
12
(
9
), pp.
1576
1585
. 10.1088/0957-0233/12/9/325
18.
Xie
,
A.
,
Huang
,
J.
,
Xu
,
X.
,
Lu
,
Z.
,
Song
,
Q.
,
Zheng
,
L.
, and
Liu
,
S.
,
2013
, “
Focusing Schlieren Technique Applied to Measure the Flow Density in Shock Tunnel
,”
J. Exp. Fluid Mech.
,
27
(
2
), pp.
82
86
.
19.
Settles
,
G. S.
,
2001
,
Schlieren and Shadowgraph Techniques – Visualizing Phenomena in Transparent Media
,
Springer-Verlag GmbH
,
Berlin
.
You do not currently have access to this content.