Abstract

A computational fluid dynamics (CFD)-based throughflow solver is applied to the meridional analysis of low-pressure steam turbine modules. The throughflow code inherits its numerical scheme from a state-of-the-art CFD solver (TRAF code) and incorporates real gas capabilities, three-dimensional flow features, and spanwise mixing models. Secondary flow effects are introduced via a concentrated vortex model. Tip gap and shroud leakage effects are modeled in terms of source vectors in the system of governing equations. The impact of part-span shrouds and snubbers are accounted for, on a local basis, through suitable body force fields. The advection upstream splitting method (AUSM+-up) upwind strategy has been adopted as a basis to construct a numerical flux scheme explicitly suited for throughflow applications. The original formulation has been adapted to handle real gas flows and to embed the treatment of body force fields in a fully consistent framework. The capability of the procedure is assessed by analyzing the low-pressure modules of two large steam turbines designed and manufactured by Ansaldo Energia. These modules include rotor tip shrouds and part-span snubbers and feature supersonic flow and large blade twist. Throughflow predictions in terms of main performance figures and radial distributions of flow quantities are compared with experimental data and 3D steady viscous analyses. It will be shown how the proposed CFD-based throughflow model can be fruitfully used in the early stages of the design as it delivers predictions of comparable accuracy with 3D CFD analyses at a fraction of the computational time.

References

References
1.
Simon
,
J. F.
, and
Léonard
,
O.
,
2005
, “
A Throughflow Analysis Tool Based on the Navier–Stokes Equations
,”
Proceedings ETC6
,
Lille, France
,
Mar. 7–11
, pp.
7
11
.
2.
Pasquale
,
D.
,
Persico
,
G.
, and
Rebay
,
S.
,
2013
, “
Optimization of Turbomachinery Flow Surfaces Applying a CFD-Based Throughflow Method
,”
ASME J. Turbomach.
,
136
(
3
), p.
031013
. 10.1115/1.4024694
3.
Sturmaayr
,
A.
, and
Hirsch
,
C.
,
1999
, “
Shock Representation by Euler Throughflow Models and Comparison With Pitch-Averaged Navier–Stokes Solutions
,”
American Institute of Aeronautics and Astronautics
,
Reston, VA
, Technical Report, ISABE Paper No. 99-7281.
4.
Pacciani
,
R.
,
Marconcini
,
M.
, and
Arnone
,
A.
,
2017
, “
A CFD-Based Throughflow Method With Three-Dimensional Flow Features Modelling
,”
ASME J. Turbomach. Propul. Power
,
2
(
3
), p.
11
. 10.3390/ijtpp2030011
5.
Torre
,
A.
, and
Cecchi
,
S.
,
2007
, “
Latest Development and Perspectives in the Optimized Design of Low Pressure Steam Turbine at Ansaldo Energia
,”
Invited Lecture ETC7
,
Athens, Greece
, Paper No. ETC 7-503, pp.
1
22
.
6.
Liou
,
M. S.
,
2006
, “
A Sequel to AUSM, Part II: AUSM+-up for All Speeds
,”
J. Comput. Phys.
,
214
(
1
), pp.
137
170
. 10.1016/j.jcp.2005.09.020
7.
Pacciani
,
R.
,
Marconcini
,
M.
, and
Arnone
,
A.
,
2019
, “
Comparison of the AUSM+-up and Other Advection Schemes for Turbomachinery Applications
,”
Shock Waves
,
29
(
5
), pp.
705
716
. 10.1007/s00193-018-0883-4
8.
Arnone
,
A.
,
1994
, “
Viscous Analysis of Three-Dimensional Rotor Flow Using a Multigrid Method
,”
ASME J. Turbomach.
,
116
(
3
), pp.
435
445
. 10.1115/1.2929430
9.
Pacciani
,
R.
,
Rubechini
,
F.
,
Marconcini
,
M.
,
Arnone
,
A.
,
Cecchi
,
S.
, and
Daccà
,
F.
,
2016
, “
A CFD-Based Throughflow Method With An Adaptive Formulation For The S2 Streamsurface
,”
P. I. Mech. Eng. A-J. Pow.
,
230
(
1
), pp.
16
28
. 10.1177/0957650915607091
10.
Denton
,
J.
,
1978
, “
Throughflow Calculations for Transonic Axial Flow Turbines
,”
J. Eng. Power
,
100
(
2
), pp.
212
218
. 10.1115/1.3446336
11.
Adkins
,
G. G.
, and
Smith
,
L. H.
,
1982
, “
Spanwise Mixing in Axial-Flow Turbomachines
,”
J. Eng. Power
,
104
(
1
), pp.
97
110
. 10.1115/1.3227271
12.
Accornero
,
A.
,
Doria
,
G.
,
Maretto
,
L.
, and
Zunino
,
E.
,
1980
, “
Flow in a 320 MW Low-Pressure Section: Theoretical and Experimental Evaluation
,”
Steam Turbines for Large Power Outputs (Lecture Series), von Kármán Institute Institute for Fluid Dynamics
,
Rhode Saint Genese, Belgium
.
13.
Accornero
,
A.
, and
Maretto
,
L.
,
1983
, “Aerodynamics and Streamwetness Fraction of a Multi-Stage Turbine – Comparison of Prediction With Experimental Data,”
Aerothermodynamics of Low Pressure Steam Turbines and Condensers (Lecture Series 1983-06)
,
von Kármán Institute for Fluid Dynamics
,
Rhode Saint Genese, Belgium
.
14.
Rubechini
,
F.
,
Marconcini
,
M.
,
Arnone
,
A.
,
Cecchi
,
S.
, and
Daccà
,
F.
,
2007
, “
Some Aspects of CFD Modeling in the Analysis of a Low-Pressure Steam Turbine
,” ASME Paper No. GT2007-27235.
15.
Ricci
,
M.
,
Pacciani
,
R.
,
Marconcini
,
M.
, and
Arnone
,
A.
,
2018
, “
Secondary Flow and Radial Mixing Modelling for CFD-Based Through-Flow Methods: An Axial Turbine Application
,”
Energy Procedia
,
148C
, pp.
218
225
. 10.1016/j.egypro.2018.08.071
16.
Lewis
,
K. L.
,
1994
, “
Spanwise Transport in Axial-Flow Turbines: Part 2 – Throughflow Calculations Including Spanwise Transport
,”
J. Turbomach.
,
116
(
2
), pp.
187
193
.
17.
Hawthorne
,
W. R.
, and
Armstrong
,
W. D.
,
1955
, “
Rotational Flow Through Cascades Part II. The Circulation About The Cascade
,”
Q. J. Mech. Appl. Math.
,
8
(
3
), pp.
280
292
. 10.1093/qjmam/8.3.280
18.
Benner
,
M. W.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
,
2006
, “
An Empirical Prediction Method for Secondary Losses in Turbines - Part II: A New Secondary Loss Correlation
,”
ASME J. Turbomach.
,
128
(
2
), pp.
281
291
. 10.1115/1.2162594
19.
Denton
,
J.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
. 10.1115/1.2929299
20.
Stodola
,
A.
,
1922
,
Dampf- und Gasturbinen
,
Springer-Verlag
,
Berlin
.
21.
McGreehan
,
W. F.
, and
Ko
,
S. H.
,
1989
, “
Power Dissipation in Smooth and Honeycomb Labyrinth Seals
,” ASME Paper No. 89-GT-220.
22.
Yaras
,
M. I.
, and
Sjolander
,
S. A.
,
1992
, “
Prediction of Tip-Leakage Losses in Axial Turbines
,”
ASME J. Turbomach.
,
114
(
1
), pp.
204
210
. 10.1115/1.2927987
23.
Craig
,
H.
, and
Cox
,
H.
,
1970
, “
Performance Estimation of Axial Flow Turbines
,”
P. I. Mech. Eng.
,
185
(
1
), pp.
407
424
.
24.
Ainley
,
D.
, and
Mathieson
,
G.
,
1951
,
A Method of Performance Estimation for Axial-Flow Turbines
,
Aeronautical Research Council London
,
UK
, ARC R/M 2974.
25.
Traupel
,
W.
,
1956
, “
Die Strahlablenkung in der Vollbeaufschlagten Turbine
,”
Mitt. Inst. Therm. Turbomasch. ETH Nr 3. Leeman, Zurich
.
You do not currently have access to this content.