Abstract

The design of low-pressure turbines (LPTs) must account for the losses generated by the unsteady interaction with the upstream blade row. The estimation of such unsteady wake-induced losses requires the accurate prediction of the incoming wake dynamics and decay. Existing linear turbulence closures (stress–strain relationships), however, do not offer an accurate prediction of the wake mixing. Therefore, machine-learnt, nonlinear turbulence closures (models) have been developed for LPT flows with unsteady inflow conditions using a zonal-based model development approach, with an aim to enhance the wake mixing prediction for unsteady Reynolds-averaged Navier–Stokes calculations. High-fidelity time-averaged and phase-lock averaged data at a realistic isentropic Reynolds number and two reduced frequencies, i.e., with discrete incoming wakes and with wake “fogging,” have been used as reference data for a machine learning algorithm based on gene expression programing to develop models. Models developed via phase-lock averaged data were able to capture the effect of certain prominent physical phenomena in LPTs such as wake–wake interactions, whereas models based on the time-averaged data could not. Correlations with the flow physics lead to a set of models that can effectively enhance the wake mixing prediction across the entire LPT domain for both cases. Based on a newly developed error metric, the developed models have reduced the a priori error over the Boussinesq approximation on average by 45%. This study thus aids blade designers in selecting the appropriate nonlinear closures capable of mimicking the physical mechanisms responsible for loss generation.

References

References
1.
Schobeiri
,
M. T.
, and
Ozturk
,
B.
,
2004
, “
Experimental Study of the Effect of Periodic Unsteady Wake Flow on Boundary Layer Development, Separation, and Re-Attachment Along the Surface of a Low Pressure Turbine Blade
,”
ASME Turbo Expo, ASME
Paper No. GT2004-53929. 10.1115/gt2004-53929
2.
Michelassi
,
V.
,
Chen
,
L.
,
Pichler
,
R.
,
Sandberg
,
R.
, and
Bhaskaran
,
R.
,
2016
, “
High-Fidelity Simulations of Low-Pressure Turbines: Effect of Flow Coefficient and Reduced Frequency on Losses
,”
J. Turbomach.
,
138
(
11
), p.
111006
. 10.1115/1.4033266
3.
Arndt
,
N.
,
1993
, “
Blade Row Interaction in a Multistage Low-Pressure Turbine
,”
J. Turbomach.
,
115
(
1
), p.
137
. 10.1115/1.2929198
4.
Stieger
,
R. D.
, and
Hodson
,
H. P.
,
2004
, “
The Transition Mechanism of Highly-Loaded LP Turbine Blades
,”
ASME J. Turbomach.
,
126
(
4
), pp.
536
543
. 10.1115/1.1773850
5.
Stieger
,
R. D.
, and
Hodson
,
H. P.
,
2005
, “
The Unsteady Development of a Turbulent Wake Through a Downstream Low-Pressure Turbine Blade Passage
,”
J. Turbomach.
,
127
(
2
), p.
388
. 10.1115/1.1811094
6.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H. W.
,
1997
, “
Boundary Layer Development in Axial Compressors and Turbines: Part 3 of 4—LP Turbines
,”
J. Turbomach.
,
119
(
2
), pp.
225
237
. 10.1115/1.2841105
7.
Michelassi
,
V.
,
Chen
,
L. W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2015
, “
Compressible Direct Numerical Simulation of Low Pressure Turbine—Part II: Effect of Inflow Disturbances
,”
J. Turbomach.
,
137
(
7
), p.
71005
. 10.1115/1.4029126
8.
Ranjan
,
R.
,
Deshpande
,
S. M.
, and
Narasimha
,
R.
,
2017
, “
New Insights From High-Resolution Compressible DNS Studies on an LPT Blade Boundary Layer
,”
Comput. Fluids
,
153
, pp.
49
60
. 10.1016/j.compfluid.2017.05.004
9.
Wissink
,
J. G.
,
2003
, “
DNS of Separating, Low Reynolds Number Flow in a Turbine Cascade With Incoming Wakes
,”
Int. J. Heat Fluid Flow
,
24
(
4
), pp.
626
635
. 10.1016/S0142-727X(03)00056-0
10.
Michelassi
,
V.
,
Wissink
,
J. G.
, and
Rodi
,
W.
,
2003
, “
Direct Numerical Simulation, Large Eddy Simulation and Unsteady Reynolds-Averaged Navier–Stokes Simulations of Periodic Unsteady Flow in a Low-Pressure Turbine Cascade: A Comparison
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
217
(
4
), pp.
403
411
. 10.1243/095765003322315469
11.
Praisner
,
T. J.
,
Clark
,
J. P.
,
Nash
,
T. C.
,
Rice
,
M. J.
, and
Grover
,
E. A.
,
2006
, “
Performance Impacts Due to Wake Mixing in Axial Flow Turbomachinery
,”
ASME Turbo Expo
,
Barcelona, Spain
, Paper No GT2006-90666.
12.
Keadle
,
K.
, and
Mcquilling
,
M.
,
2013
, “
Evaluation of RANS Transition Modeling for High Lift LPT Flows at Low Reynolds Number
,”
Proceedings of the ASME Turbo Expo 2013, Turbine Technical Conference and Exposition
,
ASME
Paper No. GT2013-95069. 10.1115/gt2013-95069
13.
Pacciani
,
R.
,
Marconcini
,
M.
,
Arnone
,
A.
, and
Bertini
,
F.
,
2013
, “
Predicting High-Lift Low-Pressure Turbine Cascades Flow Using Transition-Sensitive Turbulence Closures
,”
J. Turbomach.
,
136
(
5
), p.
51007
. 10.1115/1.4025224
14.
Marconcini
,
M.
,
Pacciani
,
R.
,
Arnone
,
A.
,
Michelassi
,
V.
,
Pichler
,
R.
,
Zhao
,
Y.
, and
Sandberg
,
R.
,
2019
, “
LES and RANS Analysis of the End-Wall Flow in a Linear LPT Cascade With Variable Inlet Conditions, Part II: Loss Generation
,”
J. Turbomach.
,
141
(
5
), pp.
1
10
. 10.1115/1.4042208
15.
Schmitt
,
G.
,
2007
, “
About Boussinesq’s Turbulent Viscosity Hypothesis: Historical Remarks and a Direct Evaluation of Its Validity
,”
Comptes Rendus Mec.
,
335
(
9
), pp.
617
627
. 10.1016/j.crme.2007.08.004
16.
Pope
,
S. B.
,
1975
, “
A More General Effective-Viscosity Hypothesis
,”
J. Fluid Mech.
,
72
(
2
), pp.
331
340
. 10.1017/S0022112075003382
17.
Gatski
,
T.
, and
Speziale
,
C.
,
1993
, “
On Explicit Algebraic Stress Models for Complex Turbulent Flows
,”
J. Fluid Mech.
,
254
, pp.
59
78
. 10.1017/S0022112093002034
18.
Wallin
,
S.
, and
Johansson
,
A. V.
,
2000
, “
An Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Turbulent Flows
,”
J. Fluid Mech.
,
403
, pp.
89
132
. 10.1017/S0022112099007004
19.
Duraisamy
,
K.
,
Iaccarino
,
G.
, and
Xiao
,
H.
,
2019
, “
Turbulence Modeling in the Age of Data
,”
Annu. Rev. Fluid Mech.
,
51
(
1
), pp.
357
377
. 10.1146/annurev-fluid-010518-040547
20.
Duraisamy
,
K.
,
Zhang
,
Z. J.
, and
Singh
,
A. P.
,
2015
, “
New Approaches in Turbulence and Transition Modeling Using Data-Driven Techniques
,”
53rd AIAA Aerospace Sciences Meeting
,
Kissimmee, FL
,
Jan.
, pp.
1
14
.
21.
Singh
,
A. P.
,
Medida
,
S.
, and
Duraisamy
,
K.
,
2017
, “
Machine-Learning-Augmented Predictive Modeling of Turbulent Separated Flows Over Airfoils
,”
AIAA J.
,
55
(
7
), pp.
2215
2227
. 10.2514/1.J055595
22.
Ling
,
J.
,
Templeton
,
J.
, and
Kurzawski
,
A.
,
2016
, “
Reynolds Averaged Turbulence Modelling Using Deep Neural Networks With Embedded Invariance
,”
J. Fluid Mech
,
807
(
2016
), pp.
155
166
. 10.1017/jfm.2016.615
23.
Wang
,
J.-X.
,
Wu
,
J.-L.
, and
Xiao
,
H.
,
2017
, “
A Physics Informed Machine Learning Approach for Reconstructing Reynolds Stress Modeling Discrepancies Based on DNS Data
,”
Phys. Rev. Fluids
,
2
(
3
), p.
034603
. 10.1103/PhysRevFluids.2.034603
24.
Wu
,
J.-L.
,
Xiao
,
H.
, and
Paterson
,
E.
,
2018
, “
Physics-Informed Machine Learning Approach for Augmenting Turbulence Models: A Comprehensive Framework
,”
Phys. Rev. Fluids
,
3
(
7
), p.
074602
. 10.1103/PhysRevFluids.3.074602
25.
Milani
,
P. M.
,
Ling
,
J.
, and
Eaton
,
J. K.
,
2019
, “
Physical Interpretation of Machine Learning Models Applied to Film Cooling Flows
,”
J. Turbomach.
,
141
(
1
), p.
011004
. 10.1115/1.4041291
26.
Ferreira
,
C.
,
2001
, “
Gene Expression Programming: A New Adaptive Algorithm for Solving Problems
,”
Complex Syst.
,
13
(
2
), pp.
87
129
.
27.
Weatheritt
,
J.
, and
Sandberg
,
R. D.
,
2016
, “
A Novel Evolutionary Algorithm Applied to Algebraic Modifications of the RANS Stress–Strain Relationship
,”
J. Comput. Phys.
,
325
, pp.
22
37
. 10.1016/j.jcp.2016.08.015
28.
Weatheritt
,
J.
, and
Sandberg
,
R. D.
,
2017
, “
The Development of Algebraic Stress Models Using a Novel Evolutionary Algorithm
,”
Int. J. Heat Fluid Flow
,
68
(
Sept.
), pp.
298
318
. 10.1016/j.ijheatfluidflow.2017.09.017
29.
Weatheritt
,
J.
,
Pichler
,
R.
,
Sandberg
,
R. D.
,
Laskowski
,
G.
, and
Michelassi
,
V.
,
2017
, “
Machine Learning for Turbulence Model Development Using a High Fidelity HPT Cascade Simulation
,”
ASME Turbo Expo 2017, Turbomachinery Technical Conference and Exposition
,
ASME
Paper No. GT2017-63497. 10.1115/gt2017-63497
30.
Akolekar
,
H. D.
,
Weatheritt
,
J.
,
Hutchins
,
N.
,
Sandberg
,
R. D.
,
Laskowski
,
G.
, and
Michelassi
,
V.
,
2019
, “
Development and Use of Machine-Learnt Algebraic Reynolds Stress Models for Enhanced Prediction of Wake Mixing in Low Pressure Turbines
,”
J. Turbomach.
,
141
(
4
), p.
041010
. 10.1115/1.4041753
31.
Sandberg
,
R. D.
,
Tan
,
R.
,
Weatheritt
,
J.
,
Ooi
,
A.
,
Haghiri
,
A.
,
Michelassi
,
V.
, and
Laskowski
,
G.
,
2018
, “
Applying Machine Learnt Explicit Algebraic Stress and Scalar Flux Models to a Fundamental Trailing Edge Slot
,”
ASME J. Turbomach.
,
140
(
10
), p.
101008
. 10.1115/1.4041268
32.
Rodi
,
W.
,
1976
,
A New Algebraic Relation for Calculating the Reynolds Stresses
, Vol.
56
,
Gesellschaft fuer angewandte Mathematik und Mechanik
,
Goettingen
.
33.
Stadtmüller
,
P.
, and
Fottner
,
L.
,
2001
, “
A Test Case for the Numerical Investigation of Wake Passing Effects on a Highly Loaded LP Turbine Cascade Blade
,”
Vol. 1 Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
,
New Orleans, LA
,
Jun. 4–7
, p.
V001T03A015
.
34.
Lopez
,
M.
, and
Walters
,
D. K.
,
2016
, “
Prediction of Transitional and Fully Turbulent Flow Using an Alternative to the Laminar Kinetic Energy Approach
,”
J. Turbul.
,
17
(
3
), pp.
253
273
. 10.1080/14685248.2015.1062509
35.
Parneix
,
S.
,
Laurence
,
D.
, and
Durbin
,
P. A.
,
1998
, “
A Procedure for Using DNS Databases
,”
J. Fluids Eng. Trans. ASME
,
120
(
1
), pp.
40
46
. 10.1115/1.2819658
36.
Lumley
,
J. L.
,
1970
, “
Toward a Turbulent Constitutive Relation
,”
J. Fluid Mech.
,
41
(
2
), pp.
413
434
. 10.1017/S0022112070000678
37.
Michelassi
,
V.
, and
Wissink
,
J. G.
,
2015
, “
Turbulent Kinetic Energy Production in the Vane of a Low-Pressure Linear Turbine Cascade With Incoming Wakes
,”
Int. J. Rotating Mach.
,
2015
, p.
650783
. 10.1155/2015/650783
38.
Hatman
,
A.
, and
Wang
,
T.
,
1998
, “
Separated-Flow Transition: Part I—Experimental Methodology and Mode Classification
,”
International Gas Turbine and Aeroengine Congress and Exhibition
,
Stockholm, Sweden
,
June 2–5
, pp.
1
10
.
39.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
Bladerow Interactions, Transition, and High-Lift Aerofoils in Low-Pressure Turbines
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
71
98
. 10.1146/annurev.fluid.37.061903.175511
40.
Cumpsty
,
N. A.
, and
Horlock
,
J. H.
,
2006
, “
Averaging Nonuniform Flow for a Purpose
,”
J. Turbomach.
,
128
(
1
), p.
120
. 10.1115/1.2098807
41.
Leschziner
,
M.
,
2015
,
Statistical Turbulence Modelling for Fluid Dynamics—Demystified: An Introductory Text for Graduate Engineering Students
,
World Scientific
,
Oxford, UK
.
You do not currently have access to this content.