Abstract

This paper presents the results of computational fluid dynamics (CFD)-aided design calculations of a transonic linear cascade wind tunnel. The purpose of the wind tunnel is to generate data for the validation of numerical methods employed to calculate aerodynamic damping for forced response cases in transonic compressors. It is common for transonic wind tunnels to use transonic walls (perforated walls with controlled suction) to adjust the transonic flow in the experiment. Unfortunately, perforated walls are difficult to model in CFD simulations, and they complicate the validation process. One of the goals of the new tunnel is not to use perforated walls. The main difficulty in the design of a transonic linear cascade is achieving periodic flow for the central blades due to shock reflections from the side walls and the sensitivity of transonic flow to small changes in geometry. Other design constraints are the maximum available mass flow of 4.5 kg/s and the minimum required blade thickness of 2 mm for instrumentation. The purpose of the current CFD simulations is to determine the optimum geometry (sidewalls, tailboards, and throttle) of the tunnel with the goal of achieving near periodic flow conditions for the central blade channels at the similar condition in a typical transonic compressor.

References

References
1.
Fransson
,
T. H.
, and
Verdon
,
J. M.
,
1993
, “Panel Discussion on Standard Configurations for Unsteady Flow Through Vibrating Axial-Flow Turbomachine-Cascades,”
Unsteady Aerodynamics Aeroacoustics, and Aeroelasticity of Turbomachines and Propellers
,
Springer
,
New York
.
2.
Fleeter
,
S. S.
,
Novick
,
A. S.
,
Riffel
,
R. E.
, and
Caruthers
,
J. E.
,
1977
, “
An Experimental Determination of the Unsteady Aerodynamics in a Controlled Oscillating Cascade
,”
ASME J. Eng. Power
,
99
(
1
), pp.
88
96
. 10.1115/1.3446257
3.
Szechenyi,
E.
,
1985
, “
Fan Blade Flutter-Single Blade Instability or Blade to Blade Coupling
,” ASME Turbo Expo., No. 85-GT-216.
4.
Buffum
,
D. H.
, and
Fleeter
,
S. S.
,
1993
, “
Wind Tunnel Wall Effects in a Linear Oscillating Cascade
,”
ASME J. Turbomach.
,
115
(
1
), pp.
147
156
. 10.1115/1.2929199
5.
Watanabe
,
T.
,
Aotsuka
,
M.
, and
Machida
,
Y.
,
1998
, “Vibration Characteristics of a Transonic Turbine Cascade,”
Unsteady Aerodynamics and Aeroelasticity of Turbomachines
,
T. H.
Fransson
, ed.,
Springer
,
Dordrecht
, pp.
679
692
.
6.
Ellenberger
,
K.
, and
Gallus
,
H. E.
,
1999
, “
Experimental Investigations of Stall Flutter in a Transonic Cascade
,” ASME Turbo Expo., No. V004T03A047.
7.
Seeley
,
C. E.
,
Wakelam
,
C.
,
Zhang
,
X.
,
Hofer
,
D.
, and
Ren
,
W.
,
2017
, “
Investigations of Flutter and Aerodynamic Damping of a Turbine Blade: Experimental Characterization
,”
ASME J. Turbomach.
,
139
(
8
), p.
081011
. 10.1115/1.4035840
8.
Hergt
,
A.
,
Steinert
,
W.
, and
Grund
,
S.
,
2013
, “
Design and Experimental Investigation of a Compressor Cascade for Low Reynolds Number Conditions
,” ISABE No. 2013-110.
9.
Hirsch
,
C.
,
1993
, “
Advanced Methods for Cascade Testing
,” Technical Report AGARD-AG-328.
10.
Jacocks
,
J. L.
,
1977
, “
Aerodynamic Characteristics of Perforated Walls for Transonic Wind Tunnels
,” NASA Technical Report AEDC-TR-77-61.
11.
Mokry
,
M.
,
Chan
,
Y. Y.
, and
Jones
,
D. J.
,
1983
, “
Two-Dimensional Wind Tunnel Wall Interference
,” Technical Report AGARD-AG-281.
12.
Tweedt
,
D. L.
,
1988
, “
Experimental Investigation of the Performance of a Supersonic Compressor Cascade
,”
ASME J. Turbomach.
110
(
4
), pp.
456
466
. 10.1115/1.3262219
13.
Lejon
,
M.
,
Grönstedt
,
T.
,
Glodic
,
N.
,
Petrie-Repar
,
P.
,
Genrup
,
M.
and
Mann
,
A.
,
2017
, “
Multidisciplinary Design of a Three Stage High Speed Booster
,” ASME Turbo Expo., No. GT2017-6446.
14.
Bölcs
,
A.
,
2005
,
Transonic Flow in Turbomachines
,
Comp EduHPT
,
Lausanne
.
15.
Panovsky
,
A. J.
, and
Kielb
,
R. E.
,
2000
, “
A Design Method to Prevent Low Pressure Turbine Blade Flutter
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
89
98
. 10.1115/1.483180
16.
Gunst
,
R. F.
,
1996
, “
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,”
Technometrics
,
38
(
3
), pp.
284
286
. 10.1080/00401706.1996.10484509
17.
Vogt
,
D. M.
,
2005
, “
Experimental Investigation of Three-Dimensional Mechanisms in Low-Pressure Turbine Flutter
,” Ph.D. thesis,
Royal Institute of Technology
,
Stockholm
.
18.
Tateishi
,
A.
,
Watanabe
,
T.
,
Himeno
,
T.
, and
Uzawa
,
S.
,
2017
, “
Numerical Method for an Assessment of Steady and Motion-Excited Flow Fields in a Transonic Cascade Wind Tunnel
,”
J. Global Power Propul. Soc.
,
1
, pp.
171
183
. 10.22261/QL9XVI
19.
Petrie-Repar
,
P.
,
2006
, “Development of an Efficient and Robust Linearised Navier-Stokes Flow Solver,”
Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines
,
Springer
,
New York
, pp.
437
448
.
You do not currently have access to this content.