Abstract

This two-part paper investigates the influence of rotor–stator interactions on the blade vibrational stresses of the first rotor, excited by the downstream stator. To this end, aeroacoustic and aeroelastic measurements and numerical setup studies for the solver TRACE are conducted in order to improve the predictive accuracy of blade vibrational stresses. Part I compares tip timing data for resonance crossings of three blisk modes to numerical predictions. Due to the single-row analysis within the linearized version of the flow solver TRACE, unsteady rotor–stator interactions are excluded by default. The findings show that leaving out these interactions in the numerical setup can lead to 97% lower vibrational stress predictions with respect to the absolute value measured. To validate the prediction of rotor–stator interactions by the nonlinear frequency domain method of TRACE, unsteady pressure measurements were conducted at the casing in the inter-row section of the first stage. The results were analyzed using an optimized measuring grid and applying a compressed sensing-based azimuthal mode analysis. Predicted azimuthal mode numbers are in accordance with the experiment, whereas amplitudes deviate from the measurements in part. Part II focuses on the prediction of blade vibrational stresses. To this end, a detailed grid study is performed and comparisons to steady and unsteady measurement data are made. In summary, this two-part paper confirms the importance of rotor–stator interactions for blade vibrational stresses excited by downstream vanes at a state-of-the-art high-pressure compressor.

References

References
1.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
, “
Axial Flow Compressor Noise Studies
,”
SAE Trans.
,
70
, pp.
309
332
.
2.
Enghardt
,
L.
,
Tapken
,
U.
,
Neise
,
W.
,
Kennepohl
,
F.
, and
Heinig
,
K.
,
2001
, “
Turbine Blade/Vane Interaction Noise: Acoustic Mode Analysis Using In-Duct Sensor Rakes
,”
7th AIAA/CEAS Aeroacoustics Conference and Exhibit
,
Maastricht, Netherlands
,
May
, Paper No. 2001-2153.
3.
Behn
,
M.
,
Kisler
,
R.
, and
Tapken
,
U.
,
2016
, “
Efficient Azimuthal Mode Analysis Using Compressed Sensing
,”
22nd AIAA/CEAS Aeroacoustics Conference
,
Lyon, France
,
Jun
., Paper No. 2016-3038.
4.
Hurst
,
J.
,
Behn
,
M.
,
Tapken
,
U.
, and
Enghardt
,
L.
,
2016
, “
Detection of the Dominant Acoustic Modes Emitted by Turbomachinery Using Compressed Sensing
,”
45th International Congress on Noise Control Engineering INTER-NOISE 2016
, Vol.
253
, No.
2
,
Hamburg, Germany
,
Aug
., pp.
6543
6554
.
5.
Lengani
,
D.
,
Kindermann
,
S.
,
Selic
,
T.
,
Marn
,
A.
, and
Heitmeir
,
F.
,
2014
, “
Measurement and Decomposition of Periodic Flow Structures Downstream of a Test Turbine
,”
Exp. Fluids
,
55
(
1632
), pp.
1
15
. 10.1007/s00348-013-1632-1
6.
Sanders
,
A. J.
, and
Fleeter
,
S.
,
2001
, “
Multi-Blade Row Interactions in a Transonic Axial Compressor Part II: Rotor Wake Forcing Function & Stator Unsteady Aerodynamic Response
,”
Proceedings of ASME Turbo Expo
,
New Orleans, LA
,
June 4–7
, ASME Paper No. 2001-GT-0269.10.1115/2001-GT-0269
7.
Arnaud
,
D.
,
Ottavy
,
X.
, and
Vouillarmet
,
A.
,
2004
, “
Experimental Investigation of the Rotor–Stator Interactions Within a High-Speed, Multi-Stage, Axial Compressor. Part 2—Modal Analysis of the Interactions
,”
Proceedings of ASME Turbo Expo
,
Vienna, Austria
,
June 14–17
, ASME Paper No. GT2004-53778.10.1115/GT2004-53778
8.
Schoenenborn
,
H.
, and
Ashcroft
,
G.
,
2014
, “
Comparison of Non-Linear and Linearized CFD Analysis of the Stator–Rotor Interaction of a Compressor Stage
,”
Proceedings of ASME Turbo Expo
,
Duesseldorf, Germany
,
June 16–20
, ASME Paper No. GT2014-25256.10.1115/GT2014-25256
9.
Schoenenborn
,
H.
,
2018
, “
Analysis of the Effect of Multirow and Multipassage Aerodynamic Interaction on the Forced Response Variation in a Compressor Configuration—Part I: Aerodynamic Excitation
,”
ASME J. Turbomach.
,
140
(
051004
), pp.
1
11
. 10.1115/1.4038868
10.
Schrape
,
S.
,
Giersch
,
T.
,
Nipkau
,
J.
,
Stapelfeldt
,
S.
, and
Mück
,
B.
,
2015
, “
Tyler–Sofrin Modes in Axial High Pressure Compressor Forced Response Analyses
,”
14th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines
,
Stockholm, Sweden
,
Sept., I14-S2-3
.
11.
Richards
,
S.
,
Ramakrishnan
,
K.
,
Shieh
,
C.
,
Moyroud
,
F.
,
Picavet
,
A.
,
Ballarini
,
V.
, and
Michelassi
,
V.
,
2012
, “
Unsteady Acoustic Forcing on an Impeller Due to Coupled Blade Row Interactions
,”
ASME J. Turbomach.
,
134
(
061014
), pp.
1
9
. 10.1115/1.4006284
12.
Li
,
J.
,
Canon
,
D.
,
Schmitt
,
S.
,
Besem
,
F.
, and
Kielb
,
R. E.
,
2015
, “
Wake and Potential Interactions in a Multistage Compressor
,”
14th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines
,
Stockholm, Sweden
,
Sept.
, I14-S2-2.
13.
Choi
,
Y. S.
,
Key
,
N.
, and
Fleeter
,
S.
,
2011
, “
Vane Clocking Effects on the Resonant Response of an Embedded Rotor
,”
J. Propul. Power
,
27
(
1
), pp.
71
77
. 10.2514/1.48485
14.
Salontay
,
J. R.
,
Key
,
N.
, and
Fulayter
,
R. D.
,
2011
, “
Investigation of Flow Physics of Vane Clocking Effects on Rotor Resonant Response
,”
J. Propul. Power
,
27
(
5
), pp.
1001
1007
. 10.2514/1.B34081
15.
Zielinski
,
M.
, and
Ziller
,
G.
,
2007
, “
Noncontact Blade Vibration and Tip Clearance Measurement System for Aero Engine Application
,”
International Symposium on Air Breathing Engines
,
Beijing, China
,
Sept
., Paper No. ISABE-2007-1109.
16.
Hackenberg
,
H.-P.
, and
Hartung
,
A.
,
2016
, “
An Approach for Estimating the Effect of Transient Sweep Through a Resonance
,”
ASME J. Eng. Gas Turbines Power
,
138
(
082502
), pp.
1
12
. 10.1115/1.4032664
17.
Sanders
,
C.
,
Terstegen
,
M.
,
Jeschke
,
P.
,
Schoenenborn
,
H.
, and
Heners
,
J. P.
,
2019
, “
Rotor–Stator Interactions in a 2.5-Stage Axial Compressor, Part II: Impact of Aerodynamic Modelling on Forced Response
,”
ASME J. Turbomach.
(in press).10.1115/1.4043954
18.
Frey
,
C.
,
Ashcroft
,
G.
, and
Kersken
,
H.-P.
,
2014
, “
Advanced Numerical Methods for the Prediction of Tonal Noise in Turbomachinery—Part II: Time-Linearized Methods
,”
ASME J. Turbomach.
,
136
(
021002
), pp.
1
10
. 10.1115/1.4024649
19.
Frey
,
C.
,
Kersken
,
H.-P.
,
Ashcroft
,
G.
, and
Voigt
,
C.
,
2014
, “
A Harmonic Balance Technique for Multistage Turbomachinery Applications
,”
Proceedings of ASME Turbo Expo
,
Duesseldorf, Germany
,
Jun
., Paper No. GT2014-25230.
20.
Needell
,
D.
, and
Tropp
,
J. A.
,
2009
, “
CoSaMP: Iterative Signal Recovery From Incomplete and Inaccurate Samples
,”
Appl. Comput. Harmonic Anal.
,
26
(
3
), pp.
301
321
. 10.1016/j.acha.2008.07.002
You do not currently have access to this content.