The flow field in a ribbed triangular channel representing the trailing edge internal cooling passage of a gas turbine high-pressure turbine blade is investigated via magnetic resonance velocimetry (MRV) and large eddy simulation (LES). The results are compared to a baseline channel with no ribs. LES predictions of the mean velocity fields are validated by the MRV results. In the case of the baseline triangular channel with no ribs, the mean flow and turbulence level at the sharp corner are small, which would correspond to poor heat transfer in an actual trailing edge. For the staggered ribbed channel, turbulent mixing is enhanced, and flow velocity and turbulence intensity at the sharp edge increase. This is due to secondary flow induced by the ribs moving toward the sharp edge in the center of the channel. This effect is expected to enhance internal convective heat transfer for the turbine blade trailing edge.

References

References
1.
Saxer-Felici
,
H.
,
Naik
,
S.
, and
Gritsch
,
M.
,
2013
, “
Heat Transfer Characteristics of a Blade Trailing Edge With Pressure Side Bleed Extraction
,”
ASME
Paper No. GT2013-95003.
2.
Benson
,
M. J.
,
Elkins
,
C. J.
,
Yapa
,
S. D.
,
Ling
,
J. B.
, and
Eaton
,
J. K.
,
2012
, “
Effects of Varying Reynolds Number, Blowing Ratio, and Internal Geometry on Trailing Edge Cutback Film Cooling
,”
Exp. Fluids
,
52
(
6
), pp.
1415
1430
.
3.
Benson
,
M. J.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2011
, “
Measurements of 3D Velocity and Scalar Field for a Film-Cooled Airfoil Trailing Edge
,”
Exp. Fluids
,
51
(
2
), pp.
443
455
.
4.
Chen
,
Y.
,
Matalanis
,
C. G.
, and
Eaton
,
J. K.
,
2008
, “
High Resolution PIV Measurements Around a Model Turbine Blade Trailing Edge Film-Cooling Breakout
,”
Exp. Fluids
,
44
(
2
), pp.
199
209
.
5.
Martini
,
P.
,
Schulz
,
A.
,
Bauer
,
H. J.
, and
Whitney
,
C. F.
,
2006
, “
Detached Eddy Simulation of Film Cooling Performance on the Trailing Edge Cutback
,”
ASME J. Turbomach.
,
128
(
2
), pp.
292
299
.
6.
Martini
,
P.
,
Schulz
,
A.
, and
Bauer
,
H. J.
,
2005
, “
Film Cooling Effectiveness and Heat Transfer on the Trailing Edge Cutback of Gas Turbine Airfoils of Gas Turbine Airfoils
,”
ASME J. Turbomach.
,
128
(
1
), pp.
196
205
.
7.
Mucignat
,
C.
,
Armellini
,
A.
, and
Casarsa
,
L.
,
2013
, “
Flow Field Analysis Inside a Gas Turbine Trailing Edge Cooling Channel Under Static and Rotating Conditions: Effect of Ribs
,”
Int. J. Heat Fluid Flow
,
42
, pp.
236
250
.
8.
Armellini
,
A.
,
Coletti
,
F.
,
Arts
,
T.
, and
Scholtes
,
C.
,
2010
, “
Aerothermal Investigation of a Rib-Roughened Trailing Edge Channel With Crossing-Jets—Part I: Flow Field Analysis
,”
ASME J. Turbomach.
,
132
(
1
), p.
011009
.
9.
Coletti
,
F.
,
Armellini
,
A.
,
Arts
,
T.
, and
Scholtes
,
C.
,
2011
, “
Aerothermal Investigation of a Rib-Roughened Trailing Edge Channel With Crossing Jets—Part II: Heat Transfer Analysis
,”
ASME J. Turbomach.
,
133
(
3
), p.
031024
.
10.
Schneider
,
H.
,
Von Terzi
,
D. A.
,
Bauer
,
H. J.
, and
Rodi
,
W.
,
2015
, “
Coherent Structures in Trailing-Edge Cooling and the Challenge for Turbulent Heat Transfer Modelling
,”
Int. J. Heat Fluid Flow
,
51
, pp.
110
119
.
11.
Eckert
,
E. R. G.
, and
Irvine
,
T. F.
,
1960
, “
Pressure Drop and Heat Transfer in a Duct With Triangular Cross Section
,”
ASME J. Heat Transfer
,
82
(
2
), pp.
125
136
.
12.
Hiromoto
,
U.
,
Yuji
,
S.
, and
Hiromichi
,
F.
,
1982
, “
Turbulence Measurements and Mass Transfer in Fully Developed Flow in a Triangular Duct With a Narrow Apex Angle
,”
Int. J. Heat Mass Transfer
,
25
(
5
), pp.
615
624
.
13.
Daschiel
,
G.
,
Frohnapfel
,
B.
, and
Jovanović
,
J.
,
2013
, “
Numerical Investigation of Flow Through a Triangular Duct: The Coexistence of Laminar and Turbulent Flow
,”
Int. J. Heat Fluid Flow
,
41
, pp.
27
33
.
14.
Baek
,
S.
,
Lee
,
S.
,
Hwang
,
W.
, and
Park
,
J. S.
,
2018
, “
Experimental and Numerical Investigation of the Flow in a Trailing Edge Ribbed Internal Cooling Passage
,”
ASME
Paper No. GT2018-76741.
15.
White
,
F. M.
,
2016
,
Fluid Mechanics
,
8th ed.
,
McGraw-Hill
,
New York
, p.
325
.
16.
Lee
,
J.
,
Ko
,
S.
,
Cho
,
J. H.
, and
Song
,
S.
,
2017
, “
Validation of Magnetic Resonance Velocimetry for Mean Velocity Measurements of Turbulent Flows in a Circular Pipe
,”
J. Mech. Sci. Tech.
,
31
(
3
), pp.
1275
1282
.
17.
Elkins
,
C. J.
,
Markl
,
M.
,
Pelc
,
N.
, and
Eaton
,
J. K.
,
2003
, “
4D Magnetic Resonance Velocimetry for Mean Velocity Measurements in Complex Turbulent Flows
,”
Exp. Fluids
,
34
(
4
), pp.
494
503
.
18.
Pelc
,
N. J.
,
Sommer
,
F. G.
,
Li
,
K. C.
,
Brosnan
,
T. J.
,
Herfkens
,
R. J.
, and
Enzmann
,
D. R.
,
1994
, “
Quantitative Magnetic Resonance Flow Imaging
,”
Magn. Reson. Quant.
,
10
(
3
), pp.
125
147
.
19.
Siekman
,
M.
,
Helmer
,
D.
,
Hwang
,
W.
,
Laskowski
,
G.
,
Tan
,
E. T.
, and
Natsui
,
G.
,
2014
, “
A Combined CFD/MRV Study of Flow Through a Pin Bank
,”
ASME
Paper No. GT2014-25350.
20.
Bruschewski
,
M.
,
Freudenhammer
,
D.
,
Buchenberg
,
W. B.
,
Schiffer
,
H. P.
, and
Grundmann
,
S.
,
2016
, “
Estimation of the Measurement Uncertainty in Magnetic Resonance Velocimetry Based on Statistical Models
,”
Exp. Fluids
,
57
(
5
), p.
83
.
21.
Kim
,
J.
,
Kim
,
D.
, and
Choi
,
H.
,
2001
, “
An Immersed-Boundary Finite Volume Method for Simulations of Flow in Complex Geometries
,”
J. Comput. Phys.
,
171
(
1
), pp.
132
150
.
22.
Park
,
N.
,
Lee
,
S.
,
Lee
,
J.
, and
Choi
,
H.
,
2006
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model With a Global Model Coefficient
,”
Phys. Fluids
,
18
(
12
), pp.
109
125
.
23.
Ahn
,
J.
,
Choi
,
H.
, and
Lee
,
J. S.
,
2004
, “
Large Eddy Simulation of Flow and Heat Transfer in a Channel Roughened by Square or Semicircle Ribs
,”
ASME
Paper No. GT2004-53401.
24.
Davidson
,
L.
,
2009
, “
Large Eddy Simulations: How to Evaluate Resolution
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
1016
1025
.
25.
Carlson
,
L. W.
, and
Irvine
,
T. F.
,
1961
, “
Fully Developed Pressure Drop in Triangular Shaped Ducts
,”
ASME J. Heat Transfer
,
83
(
4
), pp.
441
444
.
26.
Tung
,
S. S.
, and
Irvine
,
T. F.
,
1979
,
Studies in Heat Transfer
,
McGraw-Hill
,
New York
, p.
309
.
You do not currently have access to this content.