Current turbulent heat flux models fail to predict accurate temperature distributions in film cooling flows. The present paper focuses on a machine learning (ML) approach to this problem, in which the gradient diffusion hypothesis (GDH) is used in conjunction with a data-driven prediction for the turbulent diffusivity field αt. An overview of the model is presented, followed by validation against two film cooling datasets. Despite insufficiencies, the model shows some improvement in the near-injection region. The present work also attempts to interpret the complex ML decision process, by analyzing the model features and determining their importance. These results show that the model is heavily reliant of distance to the wall d and eddy viscosity νt, while other features display localized prominence.

References

References
1.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
2.
Launder
,
B.
, and
Spalding
,
D.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
3.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
, Vol.
2
,
DCW Industries
,
La Canada, CA
.
4.
Shih T- H.
,
Zhu, J.
, and
Lumley, L. J.
, 1995, “
A new Reynolds Stress Algebraic Equation Model
,” Comput. Methods Appl. Mech. Eng.,
5.
Hoda
,
A.
, and
Acharya
,
S.
,
1999
, “
Predictions of a Film Coolant Jet in Crossflow With Different Turbulence Models
,”
ASME J. Turbomach.
,
122
(
3
), pp.
558
569
.
6.
Ling
,
J.
,
Ryan
,
K. J.
,
Bodart
,
J.
, and
Eaton
,
J. K.
,
2016
, “
Analysis of Turbulent Scalar Flux Models for a Discrete Hole Film Cooling Flow
,”
ASME J. Turbomach.
,
138
(
1
), p.
011006
.
7.
Kays
,
W. M.
,
1994
, “
Turbulent Prandtl Number—Where Are We?
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
284
295
.
8.
Schreivogel
,
P.
,
Abram
,
C.
,
Fond
,
B.
,
Straußwald
,
M.
,
Beyrau
,
F.
, and
Pfitzner
,
M.
,
2016
, “
Simultaneous kHz-Rate Temperature and Velocity Field Measurements in the Flow Emanating From Angled and Trenched Film Cooling Holes
,”
Int. J. Heat Mass Transfer
,
103
, pp.
390
400
.
9.
Kohli
,
A.
, and
Bogard
,
D. G.
,
2005
, “
Turbulent Transport in Film Cooling Flows
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
513
520
.
10.
Daly
,
B. J.
, and
Harlow
,
F. H.
,
1970
, “
Transport Equations in Turbulence
,”
Phys. Fluids
,
13
(
11
), pp.
2634
2649
.
11.
Abe
,
K.
, and
Suga
,
K.
,
2001
, “
Towards the Development of a Reynolds-Averaged Algebraic Turbulent Scalar-Flux Model
,”
Int. J. Heat Fluid Flow
,
22
(
1
), pp.
19
29
.
12.
Milani
,
P. M.
,
Ling
,
J.
,
Saez-Mischlich
,
G.
,
Bodart
,
J.
, and
Eaton
,
J. K.
,
2018
, “
A Machine Learning Approach for Determining the Turbulent Diffusivity in Film Cooling Flows
,”
ASME J. Turbomach.
,
140
(
2
), p.
021006
.
13.
Ling
,
J.
,
Kurzawski
,
A.
, and
Templeton
,
J.
,
2016
, “
Reynolds Averaged Turbulence Modelling Using Deep Neural Networks With Embedded Invariance
,”
J. Fluid Mech.
,
807
, pp.
155
166
.
14.
Weatheritt
,
J.
,
Pichler
,
R.
,
Sandberg
,
R. D.
,
Laskowski
,
G.
, and
Michelassi
,
V.
,
2017
, “
Machine Learning for Turbulence Model Development Using a High-Fidelity HPT Cascade Simulation
,”
ASME
Paper No. GT2017-63497.
15.
Duraisamy
,
K.
,
Zhang
,
Z. J.
, and
Singh
,
A. P.
,
2015
, “
New Approaches in Turbulence and Transition Modeling Using Data-Driven Techniques
,”
AIAA
Paper No. AIAA 2015-1284.
16.
Ribeiro
,
M. T.
,
Singh
,
S.
, and
Guestrin
,
C.
,
2016
, “
Why Should I Trust You?: Explaining the Predictions of Any Classifier
,”
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp.
1135
1144
.
17.
Wu
,
J.
,
Wang
,
J.
,
Xiao
,
H.
, and
Ling
,
J.
,
2017
, “
Visualization of High Dimensional Turbulence Simulation Data Using t-SNE
,”
AIAA
Paper No. AIAA 2017-1770.
18.
Ling
,
J.
,
Jones
,
R.
, and
Templeton
,
J.
,
2016
, “
Machine Learning Strategies for Systems With Invariance Properties
,”
J. Comput. Phys.
,
318
, pp.
22
35
.
19.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
,
Dubourg
,
V.
,
Vanderplas
,
J.
,
Passos
,
A.
,
Cournapeau
,
D.
,
Brucher
,
M.
,
Perrot
,
M.
, and
Duchesnay
,
E.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn.
,
12
, pp.
2825
2830
.http://www.jmlr.org/papers/v12/pedregosa11a.html
20.
Ling
,
J.
, and
Templeton
,
J.
,
2015
, “
Evaluation of Machine Learning Algorithms for Prediction of Regions of High Reynolds-averaged Navier–Stokes Uncertainty
,”
Phys. Fluids
,
27
(
8
), p.
085103
.
21.
Coletti
,
F.
,
Benson
,
M.
,
Ling
,
J.
,
Elkins
,
C.
, and
Eaton
,
J.
,
2013
, “
Turbulent Transport in an Inclined Jet in Crossflow
,”
Int. J. Heat Fluid Flow
,
43
, pp.
149
160
.
22.
Bodart
,
J.
,
Coletti
,
F.
,
Bermejo-Moreno
,
I.
, and
Eaton
,
J.
,
2013
, “
High-Fidelity Simulation of a Turbulent Inclined Jet in a Crossflow
,”
Cent. Turbul. Res. Annu. Res. Briefs
, (epub).https://web.stanford.edu/group/ctr/ResBriefs/2013/19_bodart.pdf
23.
Coletti
,
F.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2013
, “
An Inclined Jet in Crossflow Under the Effect of Streamwise Pressure Gradients
,”
Exp. Fluids
,
54
(
9
), p.
1589
.
24.
Folkersma
,
M.
, and
Bodart
,
J.
,
2018
, “
Large Eddy Simulation of an Asymmetric Jet in Crossflow
,”
Direct and Large-Eddy Simulation X
,
Springer International Publishing
,
Basel, Switzerland
, pp.
85
91
.
25.
Rossi
,
R.
,
Philips
,
D.
, and
Iaccarino
,
G.
,
2010
, “
A Numerical Study of Scalar Dispersion Downstream of a Wall-Mounted Cube Using Direct Simulations and Algebraic Flux Models
,”
Int. J. Heat Fluid Flow
,
31
(
5
), pp.
805
819
.
26.
Oliver
,
T. A.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Moser
,
R. D.
, and
Laskowski
,
G.
, 2017, “
Implicit LES for Shaped-Hole Film Cooling Flow
,”
ASME
Paper No. GT2017-63314.
27.
Louppe
,
G.
,
2014
, “
Understanding Random Forests: From Theory to Practice
,” e-print:
arXiv:1407.7502
.https://arxiv.org/abs/1407.7502
28.
Ling
,
J.
,
2014
, “
Improvements in Turbulent Scalar Mixing Modeling for Trailing Edge Slot Film Cooling Geometries: A Combined Experimental and Computational Approach
,”
Ph.D. thesis
, Stanford University, Stanford, CA.https://www.osti.gov/servlets/purl/1244906
You do not currently have access to this content.