This paper collects the final results of a combined experimental and numerical investigation on pressure side (PS) film cooling in a high-pressure turbine vane, including two staggered rows of cylindrical holes and a trailing edge cutback, fed by one plenum. Having learned that the scale resolving simulation technique is essential to get reasonable predictions of adiabatic film cooling effectiveness, the stress-blended eddy simulation (SBES) model has been selected as the best among the available hybrid RANS–LES options. Mainstream conditions were limited to low speed and low turbulence intensity due to the need of high temporal and spatial resolution. The choice of one only coolant-to-mainstream mass flow ratio equal to MFR = 1.5% was dictated by the hole discharge: on the one side, mainstream injection into the cooling holes and, on the other side, jet liftoff were avoided to get an effective thermal coverage downstream of the holes. SBES potential was evaluated on the basis of qualitative and quantitative characteristics of the flow along the interface between coolant and mainstream because of their ultimate effect on vane surface temperature. The focus was set on shape and dynamics of coherent structures: SBES provided evidence of shear layer Kelvin–Helmholtz instability and hairpin vortices, downstream of cooling holes, with a Strouhal number (St) of 1.3 and 0.3–0.4, respectively. Simulated vortex shedding in the cutback region was characterized by St of 0.32 to be compared against the measured St value of 0.40.

References

References
1.
Logan
,
E.
, Jr.
,
2003
,
Handbook of Turbomachinery
,
CRC Press
,
Boca Raton, FL
.
2.
Dixon
,
S. L.
, and
Hall
,
C.
,
2013
,
Fluid Mechanics and Thermodynamics of Turbomachinery
,
Butterworth-Heinemann
,
Oxford, UK
.
3.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
4.
Acharya
,
S.
,
2015
, “
The Physics of Film Cooling Flow and Heat Transfer
,” CHT-15: 6th International Symposium on Advances in Computational Heat Transfer, Piscataway, NJ, May 25–29, pp. 1812–1815.
5.
Fawcett
,
R. J.
,
Wheeler
,
A. P.
,
He
,
L.
, and
Taylor
,
R.
,
2012
, “
Experimental Investigation Into Unsteady Effects on Film Cooling
,”
ASME J. Turbomach.
,
134
(
2
), p.
021015
.
6.
Fawcett
,
R. J.
,
Wheeler
,
A. P.
,
He
,
L.
, and
Taylor
,
R.
,
2013
, “
Experimental Investigation Into the Impact of Crossflow on the Coherent Unsteadiness Within Film Cooling Flows
,”
Int. J. Heat Fluid Flow
,
40
, pp.
32
42
.
7.
Kohli
,
A.
, and
Bogard
,
D. G.
,
1998
, “
Effects of Very High Free-Stream Turbulence on the Jet-Mainstream Interaction in a Film Cooling Flow
,”
ASME J. Turbomach.
,
120
(
4
), pp.
785
790
.
8.
Rouina
,
S.
,
Miranda
,
M.
, and
Barigozzi
,
G.
,
2016
, “
Experimental Investigation of the Unsteady Flow Behavior on a Film Cooling Flat Plate
,”
Energy Procedia
,
101
, pp.
726
733
.
9.
Eberly
,
M. K.
, and
Thole
,
K. A.
,
2014
, “
Time-Resolved Film-Cooling Flows at High and Low Density Ratios
,”
ASME J. Turbomach.
,
136
(
6
), p.
061003
.
10.
Ziefle
,
J.
, and
Kleiser
,
L.
,
2013
, “
Numerical Investigation of a Film-Cooling Flow Structure: Effect of Crossflow Turbulence
,”
ASME J. Turbomach.
,
135
(
4
), p.
041001
.
11.
Kalghatgi
,
P.
, and
Acharya
,
S.
,
2014
, “
Modal Analysis of Inclined Film Cooling Jet Flow
,”
ASME J. Turbomach.
,
136
(
8
), p.
081007
.
12.
Straußwald
,
M.
,
Schmid
,
K.
,
Müller
,
H.
, and
Pfitzner
,
M.
,
2017
, “
Experimental and Numerical Investigation of Turbulent Mixing in Film Cooling Applications
,”
ASME
Paper No. GT2017-64650.
13.
Benson
,
M. J.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2011
, “
Measurements of 3D Velocity and Scalar Field for a Film-Cooled Airfoil Trailing Edge
,”
Exp. Fluids
,
51
(
2
), pp.
443
455
.
14.
Ling
,
J.
,
Yapa
,
S. D.
,
Benson
,
M. J.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2013
, “
Three-Dimensional Velocity and Scalar Field Measurements of an Airfoil Trailing Edge With Slot Film Cooling: The Effect of an Internal Structure in the Slot
,”
ASME J. Turbomach.
,
135
(
3
), p.
031018
.
15.
Yang
,
Z.
, and
Hu
,
H.
,
2012
, “
An Experimental Investigation on the Trailing Edge Cooling of Turbine Blades
,”
Propul. Power Res.
,
1
(
1
), pp.
36
47
.
16.
Holloway
,
D. S.
,
Leylek
,
J. H.
, and
Buck
,
F. A.
,
2002
, “
Pressure-Side Bleed Film Cooling—Part II: Unsteady Framework for Experimental and Computational Results
,”
ASME
Paper No. GT-2002-30472.
17.
Martini
,
P.
,
Schulz
,
A.
,
Bauer
,
H. J.
, and
Whitney
,
C. F.
,
2006
, “
Detached Eddy Simulation of Film Cooling Performance on the Trailing Edge Cutback of Gas Turbine Airfoils
,”
ASME J. Turbomach.
,
128
(
2
), pp.
292
299
.
18.
Joo
,
J.
, and
Durbin
,
P.
,
2009
, “
Simulation of Turbine Blade Trailing Edge Cooling
,”
ASME J. Fluids Eng.
,
131
(
2
), p.
021102
.
19.
Effendy
,
M.
,
Yao
,
Y. F.
,
Yao
,
J.
, and
Marchant
,
D. R.
,
2016
, “
DES Study of Blade Trailing Edge Cutback Cooling Performance With Various Lip Thicknesses
,”
Appl. Therm. Eng.
,
99
, pp.
434
445
.
20.
Schneider
,
H.
,
von Terzi
,
D.
, and
Bauer
,
H.-J.
,
2010
, “
Large-Eddy Simulations of Trailing-Edge Cutback Film Cooling at Low Blowing Ratio
,”
Int. J. Heat Fluid Flow
,
31
(
5
), pp.
767
775
.
21.
Schneider
,
H.
,
von Terzi
,
D.
, and
Bauer
,
H.-J.
,
2012
, “
Turbulent Heat Transfer and Coherent Structures in Trailing-Edge Cutback Film Cooling
,”
Flow Turbul. Combust.
,
88
(
1–2
), pp.
101
120
.
22.
Naqavi
,
I. Z.
,
Tucker
,
P. G.
, and
Liu
,
Y.
,
2014
, “
Large-Eddy Simulation of the Interaction of Wall Jets With External Stream
,”
Int. J. Heat Fluid Flow
,
50
, pp.
431
444
.
23.
Ravelli
,
S.
, and
Barigozzi
,
G.
,
2018
, “
Stress-Blended Eddy Simulation of Coherent Unsteadiness in Pressure Side Film Cooling Applied to a First Stage Turbine Vane
,”
ASME J. Heat Transfer
,
140
(
9
), p.
092201
.
24.
Barigozzi
,
G.
,
Armellini
,
A.
,
Mucignat
,
C.
, and
Casarsa
,
L.
,
2012
, “
Experimental Investigation of the Effects of Blowing Conditions and Mach Number on the Unsteady Behavior of Coolant Ejection Through a Trailing Edge Cutback
,”
Int. J. Heat Fluid Flow
,
37
, pp.
37
50
.
25.
Barigozzi
,
G.
,
Ravelli
,
S.
,
Armellini
,
A.
,
Mucignat
,
C.
, and
Casarsa
,
L.
,
2013
, “
Effects of Injection Conditions and Mach Number on Unsteadiness Arising Within Coolant Jets Over a Pressure Side Vane Surface
,”
Int. J. Heat Mass Transfer
,
67
, pp.
1220
1230
.
26.
Abdeh
,
H.
, and
Barigozzi
,
G.
,
2018
, “
A Parametric Investigation of Vane Pressure Side Cutback Film Cooling by Dual Luminophor PSP
,”
Int. J. Heat Fluid Flow
,
69
, pp.
106
116
.
27.
Ravelli
,
S.
, and
Barigozzi
,
G.
,
2014
, “
Application of Unsteady Computational Fluid Dynamics Methods to Trailing Edge Cutback Film Cooling
,”
ASME J. Turbomach.
,
136
(
12
), p.
121006
.
28.
Ravelli
,
S.
, and
Barigozzi
,
G.
,
2015
, “
Modelling the Influence of Vortex Shedding on Trailing Edge Cutback Film Cooling at Different Blowing Ratios
,”
11th European Conference on Turbomachinery Fluid dynamics & Thermodynamics (ETC11), Madrid
, Spain, Mar. 23–27, Paper No.
ETC2015-022
.https://aerospace-europe.eu/media/books/ETC2015-022.pdf
29.
Kays
,
W.
,
1994
, “
Turbulent Prandtl Number—Where Are We?
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
284
295
.
30.
Ling
,
J.
,
Elkins
,
C.
, and
Eaton
,
J.
,
2014
, “
Optimal Turbulent Schmidt Number for RANS Modeling of Trailing Edge Slot Film Cooling
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
072605
.
31.
Ling
,
J.
,
Ryan
,
K. J.
,
Bodart
,
J.
, and
Eaton
,
J. K.
,
2016
, “
Analysis of Turbulent Scalar Flux Models for a Discrete Hole Film Cooling Flow
,”
ASME J. Turbomach.
,
138
(
1
), p.
011006
.
32.
Menter
,
F. R.
,
2016
, “
Stress-Blended Eddy Simulation (SBES)—A New Paradigm in Hybrid RANS-LES Modeling
,”
Symposium on Hybrid RANS-LES Methods (HRLM 2016)
, Strasbourg, France, Sept. 26–28, pp.
1
5
.
33.
Menter
,
F. R.
,
2015
, “
Best Practice: Scale-Resolving Simulations in ANSYS CFD
,” Version 2.00, ANSYS Germany GmbH, Darmstadt, Germany, pp.
1
75
, http://www.ara.bme.hu/neptun/BMEGEATME02/2015-2016-I/gyak/tb-best-practices-scale-resolving-models.pdf
34.
Acharya
,
S.
,
Tyagi
,
M.
, and
Hoda
,
A.
,
2001
, “
Flow and Heat Transfer Predictions for Film Cooling
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
110
125
.
35.
Haller
,
G.
,
2005
, “
An Objective Definition of a Vortex
,”
J. Fluid Mech.
,
525
, pp.
1
26
.
36.
Kolář
,
V.
,
2011
, “
Brief Notes on Vortex Identification
,”
Eighth WSEAS International Conference on Fluid Mechanics—Eighth WSEAS International Conference on Heat and Mass Transfer
(
FM'11/HMT'11
), Puerto Morelos, Mexico, Jan. 29–31, pp.
23
28
.https://dl.acm.org/citation.cfm?id=1959564
37.
Green
,
B.
,
2012
,
Fluid Vortices
, Vol.
30
,
Springer Science & Business Media
,
Vancouver, BC, Canada
.
You do not currently have access to this content.