A double-wall cooling scheme combined with effusion cooling offers a practical approximation to transpiration cooling which in turn presents the potential for very high cooling effectiveness. The use of the conventional conjugate computational fluid dynamics (CFD) for the double-wall blade can be computationally expensive and this approach is therefore less than ideal in cases where only the preliminary results are required. This paper presents a computationally efficient numerical approach for analyzing a double-wall effusion cooled gas turbine blade. An existing correlation from the literature was modified and used to represent the two-dimensional distribution of film cooling effectiveness. The internal heat transfer coefficient was calculated from a validated conjugate analysis of a wall element representing an element of the aerofoil wall and the conduction through the blade solved using a finite element code in ANSYS. The numerical procedure developed has permitted a rapid evaluation of the critical parameters including film cooling effectiveness, blade temperature distribution (and hence metal effectiveness), as well as coolant mass flow consumption. Good agreement was found between the results from this study and that from literature. This paper shows that a straightforward numerical approach that combines an existing correlation for film cooling from the literature with a conjugate analysis of a small wall element can be used to quickly predict the blade temperature distribution and other crucial blade performance parameters.

References

References
1.
Han
,
J.-C.
,
2013
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press/Taylor & Francis
,
Boca Raton, FL
.
2.
Andersson
,
B.
,
Andersson
,
R.
,
Håkansson
,
L.
,
Mortensen
,
M.
,
Sudiyo
,
R.
, and
van Wachem
,
B.
,
2011
,
Computational Fluid Dynamics for Engineers
,
Cambridge University Press
,
Cambridge, UK
.
3.
Laschet
,
G.
,
Rex
,
S.
,
Bohn
,
D.
, and
Moritz
,
N.
,
2002
, “
3-D Conjugate Analysis of Cooled Coated Plates and Homogenization of Their Thermal Properties
,”
Numer. Heat Transfer: Part A
,
42
(
1–2
), pp.
91
106
.
4.
Laschet
,
G. M.
,
Rex
,
S.
,
Bohn
,
D.
, and
Moritz
,
N.
,
2003
, “
Homogenization of Material Properties of Transpiration Cooled Multilayer Plates
,”
ASME
Paper No. GT2003-38439
.
5.
Laschet
,
G.
,
Krewinkel
,
R.
,
Hul
,
P.
, and
Bohn
,
D.
,
2013
, “
Conjugate Analysis and Effective Thermal Conductivities of Effusion-Cooled Multi-Layer Blade Sections
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
812
821
.
6.
Zecchi
,
S.
,
Arcangeli
,
L.
,
Facchini
,
B.
, and
Coutandin
,
D.
,
2004
, “
Features of a Cooling System Simulation Tool Used in Industrial Preliminary Design Stage
,”
ASME
Paper No. GT2004-53547
.
7.
Hylton
,
L. D.
,
Mihelc
,
M. S.
,
Turner
,
E. R.
,
Nealy
,
D. A.
, and
York
,
R. E.
,
1983
, “
Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes
,” NASA/Detroit Diesel Allison; Indianapolis, IN, Technical Report No.
NASA CR 168015
.https://ntrs.nasa.gov/search.jsp?R=19830020105
8.
Heidmann
,
J. D.
,
Kassab
,
A. J.
,
Divo
,
E. A.
,
Rodriguez
,
F.
, and
Steinthorsson
,
E.
,
2003
, “
Conjugate Heat Transfer Effects on a Realistic Film-Cooled Turbine Vane
,”
ASME
Paper No. GT2003-38553
.
9.
Kassab
,
A.
,
Divo
,
E.
,
Heidmann
,
J.
,
Steinthorsson
,
E.
, and
Rodriguez
,
F.
,
2003
, “
BEM/FVM Conjugate Heat Transfer Analysis of a Three-Dimensional Film Cooled Turbine Blade
,”
Int. J. Heat Fluid Flow
,
13
(
5
), pp.
581
610
.
10.
Rigby
,
D. L.
,
Heidmann
,
J. D.
,
Ameri
,
A. A.
, and
Garg
,
V. K.
,
2001
, “
Improved Modeling Capabilities in Glenn-HT—The NASA Glenn Research Center General Multi-Block Navier–Stokes Heat Transfer Code
,” Cleveland, OH, NASA Report No.
20020073073
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20020073073.pdf
11.
Mendez
,
S.
,
Nicoud
,
F.
, and
Poinsot
,
T.
, “
Large-Eddy Simulation of a Turbulent Flow around a Multi-Perforated Plate
,”
Complex Effects in Large Eddy Simulations
, Kassinos S. C., Langer C. A., Iaccarino G., Moin P., eds., Vol. 56. Springer, Berlin, Heidelberg.
12.
Amaral
,
S.
,
Verstraete
,
T.
,
Van den Braembussche
,
R.
, and
Arts
,
T.
,
2010
, “
Design and Optimization of the Internal Cooling Channels of a High Pressure Turbine Blade—Part I: Methodology
,”
ASME J. Turbomach.
,
132
(
2
), p.
021013
.
13.
Bonini
,
A.
,
Andreini
,
A.
,
Carcasci
,
C.
,
Facchini
,
B.
,
Ciani
,
A.
, and
Innocenti
,
L.
,
2012
, “
Conjugate Heat Transfer Calculations on GT Rotor Blade for Industrial Applications—Part I: Equivalent Internal Fluid Network Setup and Procedure Description
,”
ASME
Paper No. GT2012-69846.
14.
Andreini
,
A.
,
Bonini
,
A.
,
Da Soghe
,
R.
,
Facchini
,
B.
,
Ciani
,
A.
, and
Innocenti
,
L.
, “
Conjugate Heat Transfer Calculations on GT Rotor Blade for Industrial Applications—Part II: Improvement of External Flow Modeling
,”
ASME
Paper No. GT2012-69849
.
15.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Bogard
,
D.
,
2010
, “
A Film-Cooling Correlation for Shaped Holes on a Flat-Plate Surface
,”
ASME J. Turbomach.
,
133
(
1
), p.
011002
.
16.
L'Ecuyer
,
M. R.
, and
Soechting
,
F. O.
,
1985
, “
A Model for Correlating Flat Plate Film Cooling Effectiveness for Rows of Round Holes
,” AGARD Heat Transfer and Cooling in Gas Turbine, West Palm Beach, FL, p. 12.
17.
Sellers
,
J. P.
,
1963
, “
Gaseous Film Cooling With Multiple Injection Stations
,”
AIAA J.
,
1
(
9
), pp.
2154
2156
.
18.
Andrei
,
L.
,
Andreini
,
A.
,
Facchini
,
B.
, and
Winchler
,
L.
,
2014
, “
A Decoupled CHT Procedure: Application and Validation on a Gas Turbine Vane With Different Cooling Configurations
,”
Energy Procedia
,
45
, pp.
1087
1096
.
19.
Baldauf
,
S.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2002
, “
Correlation of Film-Cooling Effectiveness From Thermographic Measurements at Engine-like Conditions
,”
ASME
Paper No. GT2002-30180
.
20.
Baldauf
,
S.
,
Schulz
,
A.
,
Wittig
,
S.
, and
Scheurlen
,
M.
,
1997
, “
An Overall Correlation of Film Cooling Effectiveness From One Row of Holes
,”
ASME
Paper No. 97-GT-079
.
21.
Murray
,
A. V.
,
Ireland
,
P. T.
,
Wong
,
T. H.
,
Tang
,
S. W.
, and
Rawlinson
,
A. J.
,
2018
, “
High Resolution Experimental and Computational Methods for Modelling Multiple Row Effusion Cooling Performance
,”
Int. J. Turbomach., Propul. Power
,
3
(
1
), p.
4
.
22.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Advances in Heat Transfer
,
Elsevier
,
New York
, pp.
321
379
.
23.
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Rawlinson
,
A. J.
,
2017
, “
An Integrated Conjugate Computational Approach for Evaluating the Aerothermal and Thermomechanical Performance of Double-Wall Effusion Cooled Systems
,”
ASME
Paper No. GT2017-64711.
24.
Gurram
,
N.
,
Ireland
,
P. T.
,
Wong
,
T. H.
, and
Self
,
K. P.
,
2016
, “
Study of Film Cooling in the Trailing Edge Region of a Turbine Rotor Blade in High Speed Flow Using Pressure Sensitive Paint
,”
ASME
Paper No. GT2016-57356
.
25.
Colladay
,
R. S.
,
1972
, “
Analysis and Comparison of Wall Cooling Schemes for Advanced Gas Turbine Applications
,” NASA/Lewis Research Center, Cleveland, OH, Report Nos.
NASA-TN-D-6633
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19720007291.pdf
26.
Lee
,
T. W.
,
2013
,
Aerospace Propulsion
,
Wiley
,
West Sussex, UK
.
27.
Baldauf
,
S.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1999
, “
High-Resolution Measurements of Local Effectiveness From Discrete Hole Film Cooling
,”
ASME J. Turbomach.
,
123
(
4
), pp.
758
765
.
28.
Holland
,
M. J.
, and
Thake
,
T. F.
,
1980
, “
Rotor Blade Cooling in High Pressure Turbines
,”
J. Aircr.
,
17
(
6
), pp.
412
418
.
29.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1993
,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
30.
Mayle
,
R. E.
,
Blair
,
M. F.
, and
Kopper
,
F. C.
,
1979
, “
Turbulent Boundary Layer Heat Transfer on Curved Surfaces
,”
ASME J. Heat Transfer
,
101
(
3
), pp.
521
525
.
31.
Chowdhury
,
N. H. K.
,
Zirakzadeh
,
H.
, and
Han
,
J.-C.
,
2017
, “
A Predictive Model for Preliminary Gas Turbine Blade Cooling Analysis
,”
ASME J. Turbomach.
,
139
(
9
), p.
091010
.
32.
Andrews
,
G. E.
,
Asere
,
A. A.
,
Mkpadi
,
M. C.
, and
Tirmahi
,
A.
,
1986
, “
Transpiration Cooling: Contribution of Film Cooling to the Overall Cooling Effectiveness
,”
ASME
Paper No. 86-GT-136
.
You do not currently have access to this content.