This work, a continuation of a series of investigations on the aerodynamics of aggressive interturbine ducts (ITD), is aimed at providing detailed understanding of the flow physics and loss mechanisms in four different ITD geometries. A systematic experimental and computational study was carried out by varying duct outlet-to-inlet area ratios (ARs) and mean rise angles while keeping the duct length-to-inlet height ratio, Reynolds number, and inlet swirl constant in all four geometries. The flow structures within the ITDs were found to be dominated by the boundary layer separation and counter-rotating vortices in both the casing and hub regions. The duct mean rise angle determined the severity of adverse pressure gradient in the casing's first bend, whereas the duct AR mainly governed the second bend's static pressure rise. The combination of upstream wake flow and the first bend's adverse pressure gradient caused the boundary layer to separate and intensify the strength of counter-rotating vortices. At high mean rise angle, the separation became stronger at the casing's first bend and moved farther upstream. At high ARs, a two-dimensional separation appeared on the casing and resulted in increased loss. Pressure loss penalties increased significantly with increasing duct mean rise angle and AR.

Reference

1.
Couey
,
P. T.
,
McKeever
,
C. W.
,
Malak
,
F. M.
,
Balamurugan
,
S.
,
Veeraraghava
,
H.
, and
Dhinagaran
,
R.
,
2010
, “
Computational Study of Geometric Parameter Influence on Aggressive Inter-Turbine Duct Performance
,”
ASME
Paper No. GT2010-23604.
2.
Dominy
,
R. G.
, and
Kirkham
,
D. A.
,
1995
, “
The Influence of Swirl on the Performance of Inter-Turbine Diffusers
,”
VDI Berichte Nr.
,
1186
, pp.
107
122
.
3.
Dominy
,
R. G.
, and
Kirkham
,
D. A.
,
1996
, “
The Influence of Blade Wakes on the Performance of Inter-Turbine Diffusers
,”
ASME J. Turbomach.
,
118
(
2
), pp.
347
352
.
4.
Dominy
,
R. G.
,
Kirkham
,
D. A.
, and
Smith
,
A. D.
,
1998
, “
Flow Development Through Inter-Turbine Diffusers
,”
ASME J. Turbomach.
,
120
(
2
), pp.
298
304
.
5.
Hu
,
S. Z.
,
Zhang
,
Y. F.
,
Zhang
,
X. F.
, and
Vlasic
,
E.
,
2011
, “
Nfluences of Inlet Swirl Distributions on an Inter-Turbine Duct—Part I: Casing Swirl Variation
,”
ASME
Paper No. GT2011-45554.
6.
Zhang
,
Y. F.
,
Hu
,
S. Z.
,
Zhang
,
X. F.
, and
Vlasic
,
E.
,
2011
, “
Influences of Inlet Swirl Distributions on an Inter-Turbine Duct—Part II: Hub Swirl Variation
,”
ASME
Paper No. GT2011-45555.
7.
Marn
,
A.
,
Göttlich
,
E.
,
Pecnik
,
R.
,
Malzacher
,
F. J.
,
Schennach
,
O.
, and
Pirker
,
H. P.
,
2007
, “
The Influence of Blade Tip Gap Variation on the Flow Through an Aggressive S-Shaped Intermediate Turbine Duct Downstream of a Transonic Turbine Stage—Part I: Time-Averaged Results
,”
ASME
Paper No. GT2007-27405.
8.
Göttlich
,
E.
,
Marn
,
A.
,
Pecnik
,
R.
,
Malzacher
,
F. J.
,
Schennach
,
O.
, and
Pirker
,
H. P.
,
2007
, “
The Influence of Blade Tip Gap Variation on the Flow Through an Aggressive S-Shaped Intermediate Turbine Duct Downstream of a Transonic Turbine Stage—Part II: Time-Averaged Results and Surface Flow
,”
ASME
Paper No. GT2007-28069.
9.
Marn
,
A.
,
Göttlich
,
E.
,
Malzacher
,
F.
, and
Pirker
,
H. P.
,
2012
, “
The Effect of Rotor Tip Clearance Size Onto the Separation Flow Though a Super-Aggressive S-Shaped Intermediate Turbine Duct Downstream of a Transonic Turbine Stage
,”
ASME J. Turbomach.
,
134
(
5
), p.
051019
.
10.
Norris
,
G.
,
Dominy
,
R. G.
, and
Smith
,
A. D.
,
1998
, “
A Strut Influenced Within a Diffusing Annular S-Shaped Duct
,”
ASME
Paper No. 98-GT-425.
11.
Norris
,
G.
, and
Dominy
,
R. G.
,
1997
, “
Diffusion Rate Influences on Inter-Turbine Diffusers
,”
Proc. IMechE Part A J. Power Energy
,
211
(
3
), pp.
235
242
.
12.
Axelsson
,
L.-U.
,
Arroyo Osso
,
C.
,
Cadrecha
,
D.
, and
Johansson
,
T. G.
,
2007
, “
Design, Performance Evaluation and Endwall Flow Structure Investigation of an S-Shaped Intermediate Turbine Duct
,”
ASME
Paper No. GT2007-27650.
13.
Axelsson
,
L.-U.
, and
Johansson
,
T. G.
,
2008
, “
Experimental Investigation of the Time-Averaged Flow in an Intermediate Turbine Duct
,”
ASME
Paper No. GT2008-50829.
14.
Zhang
,
Y. F.
,
Zhang
,
X. F.
,
Mahallati
,
A.
, and
Vlasic
,
E.
,
2013
, “
Aerodynamic Design of Low Aspect Ratio Structural Airfoils Within an Inter-Turbine Duct
,” ISABE Paper No. ISABE-2013-1149.
15.
Gottlich
,
E.
,
2011
, “
Research on the Aerodynamics of Intermediate Turbine Diffusers
,”
Prog. Aerosp. Sci.
,
47
(
4
), pp.
249
279
.
16.
Sovran
,
G.
, and
Klomp
,
E. D.
,
1967
, “
Experimentally Determined Optimum Geometries for Rectilinear Diffusers With Rectangular, Conical or Annular Cross Section
,”
Fluid Mechanics of Internal Flow
,
G.
Sovran
, ed.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
270
319
.
17.
NUMECA,
2011
, “
Numeca Fine/Design3D V8.9 User Manual
,” NUMECA International, San Francisco, CA, accessed Aug. 22, 2018 https://www.numeca.com/product/finedesign3d
18.
Hu
,
S. Z.
,
Zhang
,
X. F.
,
Benner
,
M.
,
Gostelow
,
P.
, and
Vlasic
,
E.
,
2010
, “
Geometric Optimization of Aggressive Inter-Turbine Ducts
,”
ASME
Paper No. IMECE 2010-37323.
19.
NUMECA,
2011
, “
Numeca Fine/Turbo V8.9 User Manual
,” NUMECA International, San Francisco, CA, accessed Aug. 22, 2018 https://www.numeca.com/product/fineturbo
20.
Zhang
,
X. F.
,
Hu
,
S. Z.
,
Benner
,
M.
,
Gostelow
,
P.
, and
Vlasic
,
E.
,
2010
, “
Experimental and Numerical Study on an Inter-Turbine Duct
,”
ASME
Paper No. IMECE 2010-37322.
21.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
,
1988
, “
Growth of Secondary Loss and Vorticity in an Axial Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
1
8
.
22.
Brookfield
,
J. M.
,
Waitz
,
I. A.
, and
Sell
,
J.
,
1996
, “
Wake Decay: Effect of Freestream Swirl
,”
ASME
Paper No. 96-GT-495.
You do not currently have access to this content.