An experimental investigation of the geometrical parameter effects on the film cooling performance of a fan-shaped hole was conducted on a low speed flat-plate facility. The pressure sensitive paint (PSP) technique and steady liquid crystal (SLC) technique were employed to determine the adiabatic film cooling effectiveness and heat transfer coefficients, respectively, for a blowing ratio ranging from 0.3 to 3 and a density ratio of DR = 1.5. Several geometrical parameters were investigated, including lateral expansion angle, length-to-diameter ratio, and hole entrance shape. Local, laterally averaged, and area-averaged adiabatic film cooling effectiveness, heat transfer coefficients, and net heat flux reduction (NHFR) were shown to provide a comprehensive understanding on the geometrical parameter effects on the thermal performance. A novel method was proposed for designing a fan-shaped hole with short length-to-diameter ratio to design to achieve high film cooling performance. The original and optimized fan-shaped holes were compared in terms of adiabatic film cooling effectiveness, heat transfer coefficients, and NHFR. Results showed that the optimized fan-shaped hole with short length-to-diameter ratio, large lateral diffusion angle, and slot hole entrance shape obtained highest overall thermal performance. It demonstrated the feasibility of adopting the proposed design method to design fan-shaped holes applied in thin wall gas turbine blades.

References

1.
Liang
,
G.
,
2009
, “
Turbine Airfoil With Multiple Near Wall Compartment Cooling
,” U.S. Patent No. 7,556,476 B1.
2.
Li
,
W.
,
Li
,
X.
,
Ren
,
J.
,
Jiang
,
H.
,
Yang
,
L.
, and
Ligrani
,
P.
,
2016
, “
Effect of Reynolds Number, Hole Patterns and Hole Inclination on Cooling Performance of an Impinging Jet Array—Part I: Convective Heat Transfer Results and Optimization
,”
ASME J. Turbomach.
,
139
(
4
), p.
041002
.
3.
Li
,
W.
,
Li
,
X.
,
Ren
,
J.
,
Jiang
,
H.
, and
Yang
,
L.
,
2016
, “
Effect of Reynolds Number, Hole Patterns, Target Plate Thickness on Cooling Performance of an Impinging Jet Array—Part II: Conjugate Heat Transfer Results and Optimization
,”
ASME J. Turbomach.
,
139
(
10
), p.
101001
.
4.
Li
,
W.
,
Xu
,
M.
,
Ren
,
J.
, and
Jiang
,
H.
,
2017
, “
Experimental Investigation of Local and Average Heat Transfer Coefficients Under an Inline Impinging Jet Array, Including Jets With Low Impingement Distance and Inclined Angle
,”
ASME J Heat Transfer
,
139
(
1
), p.
012201
.
5.
Li
,
W.
,
Shi
,
W.
,
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2017
, “
On the Flow Structures and Adiabatic Film Effectiveness for Simple and Compound Angle Hole With Varied Length-to-Diameter Ratio by LES and PSP Techniques
,”
ASME J Heat Transfer
,
139
(
12
), p.
122201
.
6.
Lutum
,
E.
, and
Johnson
,
B. V.
,
1999
, “
Influence of the Hole Length-to Diameter Ratio on Film Cooling With Cylindrical Holes
,”
ASME J. Turbomach.
,
121
(
2
), pp.
209
216
.
7.
Harrington
,
M. K.
,
McWaters
,
M. A.
,
Bogard
,
D. G.
,
Lemmon
,
C. A.
, and
Thole
,
K. A.
,
2001
, “
Full-Coverage Film Cooling With Short Normal Injection Holes
,”
ASME
Paper No. 2001-GT-0130.
8.
Saumweber
,
C.
, and
Schulz
,
A.
,
2008
, “
Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes
,”
ASME
Paper No. GT2008-51038.
9.
Gritsch
,
M.
,
Colban
,
W.
,
Schär
,
H.
, and
Döbbeling
,
K.
,
2005
, “
Effect of Hole Geometry on the Thermal Performance of Fan-Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
127
(
4
), pp.
718
725
.
10.
Heneka
,
C.
,
Schulz
,
A.
,
Bauer
,
H.-J.
,
Heselhaus
,
A.
, and
Crawford
,
M. E.
,
2010
, “
Film Cooling Performance of Sharp-Edged Diffuser Holes With Lateral Inclination
,”
ASME
Paper No. GT2010-23090.
11.
An
,
B. T.
,
Liu
,
J. J.
, and
Zhou
,
S. J.
,
2017
, “
Geometrical Parameter Effects on Film-Cooling Effectiveness of Rectangular Diffusion Holes
,”
ASME J. Turbomach.
,
139
(
8
), p.
081010
.
12.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
549
556
.
13.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2000
, “
Film-Cooling Holes With Expanded Exits: Near Hole Heat Transfer Coefficients
,”
Int. J. Heat Fluid Flow
,
21
(
2
), pp.
146
153
.
14.
Gritsch
,
M.
,
Saumweber
,
C.
,
Schulz
,
A.
,
Wittig
,
S.
, and
Sharp
,
E.
,
2000
, “
Effect of Internal Coolant Crossflow Orientation on the Discharge Coefficient of Shaped Film-Cooling Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
146
153
.
15.
Thole
,
K. A.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Flowfield Measurements for Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
2
), pp.
327
336
.
16.
Kohli
,
A.
, and
Bogard
,
D.
,
1999
, “
Effects of Hole Shape on Film Cooling With Large Angle Injection
,”
ASME
Paper No. 99-GT-165.
17.
Takahashi
,
H.
,
Nuntadusit
,
C.
,
Kimoto
,
H.
,
Ishida
,
H.
,
Ukai
,
T.
, and
Takeishi
,
K.
,
2001
, “
Characteristics of Various Film Cooling Jets Injected in a Conduit
,”
Ann. New York Acad. Sci.
,
934
, pp.
345
352
.
18.
Bruce-Black
,
J. E.
,
Davidson
,
F. T.
, and
Johns
,
D. R.
,
2011
, “
Practical Slot Configurations for Turbine Film Cooling Applications
,”
ASME J. Turbomach.
,
133
(
3
), p.
031020
.
19.
Bunker
,
R. S.
,
2011
, “
A Study of Mesh-Fed Slot Film Cooling
,”
ASME J. Turbomach.
,
131
(
1
), p.
011022
.
20.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
2002
, “
A Converging Slot-Hole Film-Cooling Geometry—Part 1: Low-Speed FlatPlate Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
453
460
.
21.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2007
, “
Double-Jet Ejection of Cooling Air for Improved Film Cooling
,”
ASME J. Turbomach
,
129
(
4
), pp.
809
815
.
22.
Chi
,
Z.
,
Ren
,
J.
,
Jiang
,
H.
, and
Zang
,
S.
,
2016
, “
Geometrical Optimization and Experimental Validation of a Tripod Film Cooling Hole With Asymmetric Side Holes
,”
ASME J. Heat Transfer
,
138
(
6
), p.
061701
.
23.
Han
,
C.
,
Ren
,
J.
, and
Jiang
,
H.
,
2014
, “
Experimental Investigations of SYCEE Film Cooling Performance on a Plate and a Tested Vane of an F-Class Gas Turbine
,”
ASME
Paper No. GT2014-25774.
24.
Chi
,
Z.
,
Li
,
X.
,
Han
,
C.
,
Ren
,
J.
, and
Jiang
,
H.
,
2014
, “
Optimization of the Hole Exit Shaping of Film Holes Without and With Compound Angles for Maximal Film Cooling Effectiveness
,”
ASME
Paper No. GT2014-25212.
25.
Kusterer
,
K.
,
Dickhoff
,
J.
,
Campana
,
N. T.
,
Sugimoto
,
T.
,
Tanaka
,
R.
,
Kazari
,
M.
, and
Bohn
,
D.
,
2016
, “
Automated Design Space Exploration of Advanced-Shaped Film Cooling Holes Using the SHERPA Algorithm
,”
ASME
Paper No. GT2016-56194.
26.
Nita
,
K.
,
Okita
,
Y.
,
Nakamata
,
C.
,
Kubo
,
S.
,
Yonekura
,
K.
, and
Watanabe
,
O.
,
2014
, “
Film Cooling Hole Shape Optimization Using Proper Orthogonal Decomposition
,”
ASME
Paper No. GT2014-27239.
27.
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2016
, “
Influence of Different Film Cooling Arrangements on Endwall Cooling
,”
Int. J. Heat Mass Transfer
,
102
, pp.
348
359
.
28.
Russin
,
R. A.
,
Alfred
,
D.
, and
Wright
,
L. M.
,
2009
, “
Measurement of Detailed Heat Transfer Coefficient and Film Cooling Effectiveness Distributions Using PSP and TSP
,”
ASME
Paper No. GT2009-59975.
29.
Zhang
,
L.
, and
Moon
,
H. K.
,
2004
, “
Turbine Nozzle Endwall Inlet Film Cooling: The Effect of a Back-Facing Step and Velocity Ratio
,”
ASME
Paper No. IMECE2004-59117.
30.
Ahn
,
J.
,
Mhetras
,
S.
, and
Han
,
J. C.
,
2005
, “
Film-Cooling Effectiveness on a Gas Turbine Blade Tip Using Pressure-Sensitive Paint
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
521
530
.
31.
Natsui
,
G.
,
Little
,
Z.
,
Kapat
,
J. S.
,
Dees
,
J. E.
, and
Laskowski
,
G.
,
2015
, “
A Detailed Uncertainty Analysis of Adiabatic Film Cooling Effectiveness Measurements Using Pressure Sensitive Paint
,”
ASME
Paper No. GT2015-42707.
32.
Rao
,
Y.
, and
Zang
,
S. S.
,
2010
, “
Calibrations and the Measurement Uncertainty of Wide-Band Liquid Crystal Thermography
,”
Meas. Sci. Technol.
,
21
(
1
), p.
015105
.
33.
Li
,
W.
,
Yang
,
L.
,
Ren
,
J.
, and
Jiang
,
H.
,
2016
, “
Effect of Thermal Boundary Conditions and Thermal Conductivity on Conjugate Heat Transfer Performance in Pin Fin Arrays
,”
Int. J. Heat Mass Transfer
,
95
, pp.
579
592
.
34.
Abdullah
,
N.
,
Talib
,
A. R. A.
,
Saiah
,
H. R. M.
,
Jaafar
,
A. A.
, and
Salleh
,
M. A. M.
,
2009
, “
Film Thickness Effects on Calibrations of a Narrowband Thermochromic Liquid Crystal
,”
Exp. Therm. Fluid Sci.
,
33
(
4
), pp.
561
578
.
35.
Moffat
,
R. J.
,
1985
, “
Using Uncertainty Analysis in the Planning of an Experiment
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
173
178
.
36.
Dittmar
,
J.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Assessment of Various FilmCooling Configurations Including Shaped and Compound Angle Holes Based on Large-Scale Experiments
,”
ASME J. Turbomach.
,
125
(
1
), pp.
57
64
.
You do not currently have access to this content.