Inlet distortion often occurs under off-design conditions when a flow separates within an intake and this unsteady phenomenon can seriously impact fan performance. Fan–distortion interaction is a highly unsteady aerodynamic process into which high-fidelity simulations can provide detailed insights. However, due to limitations on the computational resource, the use of an eddy resolving method for a fully resolved fan calculation is currently infeasible within industry. To solve this problem, a mixed-fidelity computational fluid dynamics method is proposed. This method uses the large Eddy simulation (LES) approach to resolve the turbulence associated with separation and the immersed boundary method (IBM) with smeared geometry (IBMSG) to model the fan. The method is validated by providing comparisons against the experiment on the Darmstadt Rotor, which shows a good agreement in terms of total pressure distributions. A detailed investigation is then conducted for a subsonic rotor with an annular beam-generating inlet distortion. A number of studies are performed in order to investigate the fan's influence on the distortions. A comparison to the case without a fan shows that the fan has a significant effect in reducing distortions. Three fan locations are examined which reveal that the fan nearer to the inlet tends to have a higher pressure recovery. Three beams with different heights are also tested to generate various degrees of distortion. The results indicate that the fan can suppress the distortions and that the recovery effect is proportional to the degree of inlet distortion.

References

References
1.
Xie
,
Z.
,
Liu
,
Y.
,
Liu
,
X.
,
Sun
,
D.
,
Lu
,
L.
, and
Sun
,
X.
,
2017
, “
Computational Model for Stall Inception and Nonlinear Evolution in Axial Flow Compressors
,”
J. Propul. Power
,
34
(3), pp.
720
729
.
2.
Tucker
,
P.
, and
Liu
,
Y.
,
2006
, “
Turbulence Modeling for Flows Around Convex Features
,”
AIAA
Paper No. AIAA 2006-716.http://highorder.berkeley.edu/proceedings/aiaa-annual-2006/paper1241.pdf
3.
Liu
,
Y.
,
Yu
,
X.
, and
Liu
,
B.
,
2008
, “
Turbulence Models Assessment for Large-Scale Tip Vortices in an Axial Compressor Rotor
,”
J. Propul. Power
,
24
(
1
), pp.
15
25
.
4.
Scillitoe
,
A. D.
,
Tucker
,
P. G.
, and
Adami
,
P.
,
2015
, “
Evaluation of Rans and Zdes Methods for the Prediction of Three-Dimensional Separation in Axial Flow Compressors
,”
ASME
Paper No. GT2015-43975.
5.
Liu
,
Y.
,
Yan
,
H.
,
Liu
,
Y.
,
Lu
,
L.
, and
Li
,
Q.
,
2016
, “
Numerical Study of Corner Separation in a Linear Compressor Cascade Using Various Turbulence Models
,”
Chin. J. Aeronaut.
,
29
(
3
), pp.
639
652
.
6.
Liu
,
Y.
,
Yan
,
H.
,
Lu
,
L.
, and
Li
,
Q.
,
2017
, “
Investigation of Vortical Structures and Turbulence Characteristics in Corner Separation in a Linear Compressor Cascade Using DDES
,”
ASME J. Fluids Eng.
,
139
(
2
), p.
021107
.
7.
Scillitoe
,
A. D.
,
Tucker
,
P. G.
, and
Adami
,
P.
,
2017
, “
Numerical Investigation of Three-Dimensional Separation in an Axial Flow Compressor: The Influence of Freestream Turbulence Intensity and Endwall Boundary Layer State
,”
ASME J. Turbomach.
,
139
(
2
), p.
021011
.
8.
Yan
,
H.
,
Liu
,
Y.
,
Li
,
Q.
, and
Lu
,
L.
,
2018
, “
Turbulence Characteristics in Corner Separation in a Highly Loaded Linear Compressor Cascade
,”
Aerosp. Sci. Technol.
,
75
, pp.
139
154
.
9.
Gourdain
,
N.
,
Gicquel
,
L. Y.
, and
Collado
,
E.
,
2012
, “
Comparison of Rans and Les for Prediction of Wall Heat Transfer in a Highly Loaded Turbine Guide Vane
,”
J. Propul. Power
,
28
(
2
), pp.
423
433
.
10.
Slotnick
,
J.
,
Khodadoust
,
A.
,
Alonso
,
J.
,
Darmofal
,
D.
,
Gropp
,
W.
,
Lurie
,
E.
, and
Mavriplis
,
D.
,
2014
, “
CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA/CR-2014-218178
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140003093.pdf
11.
Marble
,
F. E.
,
1964
, “
Three-Dimensional Flow in Turbomachines
,”
High Speed Aerodyn. Jet Propul.
,
10
(10), pp.
83
166
.
12.
Xu
,
L.
,
2002
, “
Assessing Viscous Body Forces for Unsteady Calculations
,”
ASME
Paper No. GT2002-30359.
13.
Peskin
,
C. S.
,
2002
, “
The Immersed Boundary Method
,”
Acta Numer.
,
11
, pp.
479
517
.
14.
Fadlun
,
E.
,
Verzicco
,
R.
,
Orlandi
,
P.
, and
Mohd-Yusof
,
J.
,
2000
, “
Combined Immersed-Boundary Finite Difference Methods for Three-Dimensional Complex Flow Simulations
,”
J. Comput. Phys.
,
161
(
1
), pp.
35
60
.
15.
Defoe
,
J. J.
, and
Spakovszky
,
Z. S.
,
2013
, “
Effects of Boundary-Layer Ingestion on the Aero-Acoustics of Transonic Fan Rotors
,”
ASME J. Turbomach.
,
135
(
5
), p.
051013
.
16.
Lieser
,
J.
,
Biela
,
C.
,
Pixberg
,
C.
,
Schiffer
,
H.-P.
,
Schulze
,
S.
,
Lesser
,
A.
,
Kähler
,
C.
, and
Niehuis
,
R.
,
2011
, “
Compressor Rig Test With Distorted Inflow Using Distortion Generators
,” 60 Deutscher Luft-und Raumfahrtkongress DGLRK2011-241449, pp. 1507–1516.
17.
Niehuis
,
R.
,
Lesser
,
A.
,
Probst
,
A.
,
Radespiel
,
R.
,
Schulze
,
S.
,
Kähler
,
C.
,
Spiering
,
F.
, and
Kroll
,
N.
,
2013
, “
Simulation of Nacelle Stall and Engine Response
,” 21st International Society for Air Breathing Engines (ISABE) Conference, Busan, Korea, Sept. 9–13.
18.
Übelacker
,
S.
,
Hain
,
R.
, and
Kähler
,
C. J.
,
2016
, “
Flow Investigations in a Stalling Nacelle Inlet Under Disturbed Inflow
,”
Advances in Simulation of Wing and Nacelle Stall
,
Springer
, Cham, pp.
271
283
.
19.
Wartzek
,
F.
,
Holzinger
,
F.
,
Brandstetter
,
C.
, and
Schiffer
,
H.-P.
,
2016
, “
Realistic Inlet Distortion Patterns Interacting With a Transonic Compressor Stage
,”
Advances in Simulation of Wing and Nacelle Stall
,
Springer
, Cham, pp.
285
302
.
20.
Fidalgo
,
V. J.
,
Hall
,
C.
, and
Colin
,
Y.
,
2012
, “
A Study of Fan-Distortion Interaction Within the Nasa Rotor 67 Transonic Stage
,”
ASME J. Turbomach.
,
134
(
5
), p.
051011
.
21.
Barthmes
,
S.
,
Haug
,
J. P.
,
Lesser
,
A.
, and
Niehuis
,
R.
,
2016
, “
Unsteady Cfd Simulation of Transonic Axial Compressor Stages With Distorted Inflow
,”
Advances in Simulation of Wing and Nacelle Stall
,
Springer
, Cham, pp.
303
321
.
22.
Ma
,
Y.
,
Cui
,
J.
,
Vadlamani
,
N. R.
, and
Tucker
,
P.
,
2018
, “
Effect of Fan on Inlet Distortion: Mixed-Fidelity Approach
,”
AIAA J.
,
56
(
6
), pp.
2350
2360
.
23.
Sirovich
,
L.
,
1967
, “
Initial and Boundary Value Problems in Dissipative Gas Dynamics
,”
Phys. Fluids
,
10
(
1
), pp.
24
34
.
24.
Sirovich
,
L.
,
1968
, “
Steady Gasdynamic Flows
,”
Phys. Fluids
,
11
(
7
), pp.
1424
1439
.
25.
Salathé
,
E. P.
, and
Sirovich
,
L.
,
1967
, “
Boundary-Value Problems in Compressible Magnetohydrodynamics
,”
Phys. Fluids
,
10
(
7
), pp.
1477
1491
.
26.
Goldstein
,
D.
,
Handler
,
R.
, and
Sirovich
,
L.
,
1993
, “
Modeling a No-Slip Flow Boundary With an External Force Field
,”
J. Comput. Phys.
,
105
(
2
), pp.
354
366
.
27.
Cao
,
T.
,
Vadlamani
,
N. R.
,
Tucker
,
P. G.
,
Smith
,
A. R.
,
Slaby
,
M.
, and
Sheaf
,
C. T.
,
2017
, “
Fan–Intake Interaction Under High Incidence
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041204
.
28.
Cao
,
T.
,
Hield
,
P.
, and
Tucker
,
P. G.
,
2017
, “
Hierarchical Immersed Boundary Method With Smeared Geometry
,”
J. Propul. Power
,
33
(5), pp.
1151
1163
.
29.
Watson
,
R.
,
Cui
,
J.
,
Ma
,
Y.
, and
Hield
,
P.
,
2017
, “
Improved Hierarchical Modelling for Aerodynamically Coupled Systems
,”
ASME
Paper No. GT2017-65223.
30.
Bitter
,
M.
,
Wartzek
,
F.
,
Übelacker
,
S.
,
Schiffer
,
H.-P. K.
, and
Kähler
,
C, J.
,
2015
, “
Characterization of a Distorted Transonic Compressor Flow Using Dual-Luminophore Pressure-Sensitive Paint
,”
Tenth Pacific Symposium on Flow Visualization and Image Processing (PSFVIP-10), fedOA (Federico II Open Archive)
, Naples, Italy, June 15–18.
31.
Liu
,
Y.
,
Lu
,
L.
,
Fang
,
L.
, and
Gao
,
F.
,
2011
, “
Modification of Spalart–Allmaras Model With Consideration of Turbulence Energy Backscatter Using Velocity Helicity
,”
Phys. Lett. A
,
375
(
24
), pp.
2377
2381
.
32.
Tang
,
Y.
,
Liu
,
Y.
, and
Lu
,
L.
,
2018
, “
Solidity Effect on Corner Separation and Its Control in a High-Speed Low Aspect Ratio Compressor Cascade
,”
Int. J. Mech. Sci.
,
142
, pp.
304
321
.
33.
Wartzek
,
F.
,
Brandstetter
,
C.
,
Holzinger
,
F.
, and
Schiffer
,
H.
,
2015
, “
Response of a Transonic Compressor to a Massive Inlet Distortion
,”
European Turbomachinery Conference
, Madrid, Spain, Mar.
You do not currently have access to this content.