Motivated by the recent advances in additive manufacturing, a novel turbine end-wall aerothermal management method is presented in this two-part paper. The feasibility of enhancing purge air cooling effectiveness through engineered surface structure was experimentally and numerically investigated. The fundamental working mechanism and improved cooling performance for a 90 deg turning duct are presented in Part I. The second part of this paper demonstrates this novel concept in a low-speed linear cascade environment. The performance in three purge air blowing ratios is presented and enhanced cooling effectiveness and net heat flux reduction (NHFR) were observed from experimental data, especially for higher blow ratios. The Computational fluid dynamics (CFD) analysis indicates that the additional surface features are effective in reducing the passage vortex and providing a larger area of coolant coverage without introducing additional aerodynamic loss.

References

References
1.
Sharma
,
O.
, and
Butler
,
T.
,
1987
, “
Predictions of End-Wall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
(
2
), pp.
229
236
.
2.
Hawthorne
,
W. R.
,
1955
, “
Rotational Flow Through Cascades
,”
Q. J. Mech. Appl. Math.
,
8
(
3
), pp.
266
292
.
3.
Langston
,
L. S.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Power
,
102
(
4
), pp.
866
874
.
4.
Sieverding
,
C.
, and
Bosche
,
V. D.
,
1983
, “
The Use of Colored Smoke to Visualize Secondary Flows in a Turbine-Blade Cascade
,”
J. Fluid Mech.
,
134
, pp.
85
89
.
5.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
.
6.
Blair
,
M. F.
,
1974
, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
ASME J. Heat Transfer
,
96
(
4
), pp.
524
529
.
7.
Graziani
,
R. A.
,
Blair
,
M. F.
,
Taylor
,
J. R.
, and
Mayle
,
R. E.
,
1980
, “
An Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade
,”
ASME J. Eng. Power
,
102
(
2
), pp.
257
267
.
8.
Hylton
,
L. P.
,
Mihelc
,
M. S.
,
Turner
,
E. R.
, and
York
,
R. E.
,
1981
, “
Experimental Investigation of Turbine Endwall Heat Transfer
,” Indianapolis, IN, Report No. AFWAL-TR-81-2077.
9.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
,
110
(
4
), pp.
862
869
.
10.
Kang
,
M. B.
, and
Thole
,
K. A.
,
1999
, “
Flow Field Measurements in the Endwall Region of a Stator Vane
,”
ASME
Paper No. 99-GT-188.
11.
Rodamsky
,
R. W.
, and
Thole
,
K. A.
,
2000
, “
High Freestream Turbulence Effects on Endwall Heat Transfer for a Gas Turbine Stator Vane
,”
ASME
Paper No. 2000-GT-0201.
12.
Goldman
,
L. J.
, and
McLallin
,
K. L.
,
1977
, “
Effect of Endwall Cooling on Secondary Flows in Turbine Stator Vanes
,” Cleveland, OH, Report No.
AGARD CP-214
.https://ntrs.nasa.gov/search.jsp?R=19770011215
13.
Sieverding
,
C. H.
, and
Wilputte
,
P.
,
1981
, “
Influence of Mach Number and End Wall Cooling on Secondary Flows in a Straight Nozzle Cascade
,”
ASME J. Eng. Power
,
103
(
2
), pp.
257
264
.
14.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Daws
,
W. N.
,
1996
, “
Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using Ammonia and Diazo Technique
,”
ASME J. Turbomach.
,
118
(
4
), pp.
613
621
.
15.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor and Francis
,
New York
, p.
646
.
16.
Chyu
,
M. K.
,
2001
, “
Heat Transfer Near Turbine Nozzle Endwall
,”
Ann. New York Acad. Sci.
,
934
(
1
), pp.
27
36
.
17.
Rose
,
M.
,
1994
, “
Non-Axisymmetric End-Wall Profiling in the HP NGV's of and Axial Flow Gas Turbine
,”
ASME
Paper No. 94-GT-249.
18.
Yan
,
P. J.
,
Gregory-Smith
,
D. G.
, and
Walker
,
P. J.
,
1999
, “
Secondary Flow Reduction in a Nozzle Guide Vane Cascade by Non-Axisymmetric End-Wall Profiling
,”
ASME
Paper No. 99-GT-339.
19.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Taylor
,
M. D.
,
Shahpar
,
S.
,
Hartland
,
J.
, and
Gregory-Smith
,
D. G.
,
2000
, “
Non Axisymmetric Turbine End Wall Design—Part I: Three-Dimensional Linear Design System
,”
ASME J. Turbomach.
,
122
(
2
), pp.
278
285
.
20.
Hartland
,
J. C.
,
Gregory-Smith
,
D. G.
,
Harvey
,
N. W.
, and
Rose
,
M. G.
,
2000
, “
Non Axisymmetric Turbine End Wall Design—Part II: Experimental Validation
,”
ASME J. Turbomach.
,
122
(
2
), pp.
286
293
.
21.
Ingram
,
G.
,
Gregory-Smith
,
D.
,
Rose
,
M.
,
Harvey
,
N.
, and
Brennan
,
G.
,
2002
, “
The Effect of End-Wall Profiling on Secondary Flow and Loss Development in a Turbine Cascade
,”
ASME
Paper No. GT2002-30339.
22.
Saha
,
A. K.
, and
Acharya
,
S.
,
2006
, “
Computations of Turbulent Flow and Heat Transfer Through a Three Dimensional Non-Axisymmetric Blade Passage
,”
ASME
Paper No. GT2006-90390.
23.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
, and
Sjolander
,
S. A.
,
2007
, “
Application of Non-Axisymmetric End-Wall Contouring to Conventional and High-Lift Turbine Airfoils
,”
ASME
Paper No. GT2007-27579.
24.
Han
,
S.
, and
Goldstein
,
R. J.
,
2005
, “
Influence of Blade Leading Edge Geometry on Turbine Endwall Heat (Mass) Transfer
,”
ASME
Paper No. GT2005-68590.
25.
Sauer
,
H.
,
Muller
,
R.
, and
Vogeler
,
K.
,
2001
, “
Reduction of Secondary Flow Losses in Turbine Cascades by Leading Edge Modifications at the End-Wall
,”
ASME J. Turbomach.
,
123
(
2
), pp.
207
213
.
26.
Becz
,
S.
,
Majewski
,
M. S.
, and
Langston
,
L. S.
,
2004
, “
An Experimental Investigation of Contoured Leading Edges for Secondary Flow Loss Reduction
,”
ASME
Paper No. GT2004-53964.
27.
Kawai
,
T.
,
1994
, “
Effect of Combined Boundary Layer Fences on Turbine Secondary Flow and Losses
,”
JSME Int. J. Ser. B Fluids Therm. Eng.
,
37
(
2
), pp.
377
384
.
28.
Chung
,
J. T.
,
Simon
,
T. W.
, and
Buddhavarapu
,
J.
,
1991
, “
Three-Dimensional Flow Near the Blade/End-Wall Junction of a Gas Turbine: Application of a Boundary Layer Fence
,”
ASME
Paper No. 91-GT-45.
29.
Chung
,
J. T.
, and
Simon
,
T. W.
,
1993
, “
Effectiveness of the Gas Turbine Endwall Fences in Secondary Flow Control at Elevated Freestream Turbulence Levels
,”
ASME
Paper No. 93-GT-051.
30.
Govardhan
,
M.
,
Rajender
,
A.
, and
Umang
,
J. P.
,
2006
, “
Effect of Streamwise Fences on Secondary Flows and Losses in a Two-Dimensional Turbine Rotor Cascade
,”
J. Therm. Sci.
,
15
(
4
), pp.
296
305
.
31.
Zhong
,
J.
,
Han
,
J. A.
,
Liu
,
Y.
, and
Tian
,
F.
,
2008
, “
Numerical Simulation of Endwall Fence on the Secondary Flow in Compressor Cascade
,”
ASME
Paper No. GT2008-50888.
32.
Miao
,
X.
,
Zhang
,
Q.
,
Atkin
,
C.
, and
Sun
,
Z.
,
2016
, “
End-Wall Secondary Flow Control Using Engineered Residual Surface Structure
,”
ASME
Paper No. GT2016-57347.
33.
Miao
,
X.
,
Zhang
,
Q.
,
Wang
,
L.
,
Jiang
,
H.
, and
Qi
,
H.
,
2015
, “
Application of Riblets on Turbine Blade Endwall Secondary Flow Control
,”
J. Propul. Power
,
31
(
6
), pp.
1578
1585
.
34.
Wright
,
L. M.
,
Blake
,
S. A.
, and
Han
,
J. C.
,
2008
, “
Film Cooling Effectiveness Distributions on a Turbine Blade Cascade Platform With Stator-Rotor Purge and Discrete Film Hole Flows
,”
ASME J. Turbomach.
,
130
(
3
), p.
031015
.
35.
Schulz
,
A.
,
2000
, “
Infrared Thermography as Applied to Film Cooling of Gas Turbine Components
,”
Meas. Sci. Technol.
,
11
(
7
), p.
948
.
36.
O'Dowd
,
D. O.
,
Zhang
,
Q.
,
He
,
L.
,
Ligrani
,
P. M.
, and
Friedrichs
,
S.
,
2011
, “
Comparison of Heat Transfer Measurement Techniques on a Transonic Turbine Blade Tip
,”
ASME J. Turbomach.
,
133
(
2
), p.
021028
.
37.
Zhang
,
Q.
,
He
,
L.
,
Wheeler
,
A. P. S.
,
Ligrani
,
P. M.
, and
Cheong
,
B. C. Y.
,
2011
, “
Overtip Shock Wave Structure and Its Impact on Turbine Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041001
.
38.
Zhang
,
Q.
,
O'Dowd
,
D. O.
,
He
,
L.
,
Oldfield
,
M. L. G.
, and
Ligrani
,
P. M.
,
2011
, “
Transonic Turbine Blade Tip Aerothermal Performance With Different Tip Gaps—Part I: Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041027
.
39.
Zhang
,
Q.
,
He
,
L.
,
Cheong
,
B. C. Y.
, and
Tibbott
,
I.
,
2013
, “
Aerothermal Performance of a Cooled Winglet at Engine Representative Mach and Reynolds Numbers
,”
ASME J. Turbomach.
,
135
(
1
), p.
011041
.
40.
Oldfield
,
M. L.
,
2008
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
,
130
(
2
), p.
021023
.
41.
Ma
,
H.
,
Zhang
,
Q.
,
He
,
L.
,
Wang
,
Z.
, and
Wang
,
L.
,
2017
, “
Cooling Injection Effect on a Transonic Squealer Tip—Part I: Experimental Heat Transfer Results and CFD Validation
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052506
.
42.
Jiang
,
H.
,
Chen
,
W.
,
Zhang
,
Q.
, and
He
,
L.
,
2015
, “
Analytical-Solution Based Corner Correction for Transient Thermal Measurement
,”
ASME J. Heat Transfer
,
137
(
11
), p.
111302
.
43.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
44.
Devore
,
J. L.
,
2011
, “
Probability and Statistics for Engineering and the Sciences
,” Cengage Learning, Boston, MA.
45.
Wright
,
L. M.
,
Gao
,
Z.
,
Yang
,
H.
, and
Han
,
J. C.
,
2008
, “
Film Cooling Effectiveness Distribution on a Gas Turbine Blade Platform With Inclined Slot Leakage and Discrete Film Hole Flows
,”
ASME J. Heat Transfer
,
130
(
7
), p.
071702
.
46.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
,
118
(
4
), pp. 800–806.
47.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), p.
621
.
You do not currently have access to this content.