Motivated by the recent advances in additive manufacturing, this study investigated a new turbine end-wall aerothermal management method by engineered surface structures. The feasibility of enhancing purge air cooling effectiveness through a series of small-scale ribs added onto the turbine end-wall was explored experimentally and numerically in this two-part paper. Part I presents the fundamental working mechanism and cooling performance in a 90 deg turning duct (part I), and part II of this paper validates the concept in a more realistic turbine cascade case. In part I, the turning duct is employed as a simplified model for the turbine passage without introducing the horseshoe vortex. End-wall heat transfer and temperature were measured by the infrared thermography. Computational fluid dynamics (CFD) simulation was also performed using ANSYS fluent to compliment the experimental findings. With the added end-wall rib structures, purge air flow was observed to be more attached to the end-wall and cover a larger wall surface area. Both experimental and numerical results reveal a consistent trend on improved film cooling effectiveness. The practical design optimization strategy is also discussed in this paper.

References

References
1.
Han
,
J. C.
,
2004
, “
Recent Studies in Turbine Blade Cooling
,”
Int. J. Rotating Mach.
,
10
(
6
), pp.
443
457
.
2.
Bunker
,
R. S.
,
Metzger
,
D. E.
, and
Wittig
,
S.
,
1992
, “
Local Heat Transfer in Turbine Disk Cavities—Part I: Rotor and Stator Cooling With Hub Injection of Coolant
,”
ASME J. Turbomach.
,
114
(
1
), p.
211
.
3.
Bunker
,
R. S.
,
Metzger
,
D. E.
, and
Wittig
,
S.
,
1992
, “
Local Heat Transfer in Turbine Disk Cavities—Part II: Rotor Cooling With Radial Location Injection of Coolant
,”
ASME J. Turbomach.
,
114
(
1
), pp.
221
228
.
4.
Wilson
,
M.
,
Arnold
,
P. D.
,
Lewis
,
T. W.
,
Mirzaee
,
I.
,
Rees
,
D. A. S.
, and
Owen
,
J. M.
,
1997
, “
Instability of Flow and Heat Transfer in a Rotating Cavity With a Stationary Outer Casing
,” Eurotherm 55 (Heat Transfer in Single Phase Flow), Santorini, Greece, Sept. 1.
5.
McLean
,
C.
,
Camci
,
G.
, and
Glezer
,
B.
,
2001
, “
Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
123
(
4
), pp.
687
703
.
6.
McLean
,
C.
,
Camci
,
C.
, and
Glezer
,
B.
,
2001
, “
Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High-Pressure Turbine Stage—Part II: Aerodynamic Measurements in the Rotational Frame
,”
ASME J. Turbomach.
,
123
(
4
), pp.
697
703
.
7.
Girgis
,
S.
,
Vlasic
,
E.
,
Lavole
,
J. P.
, and
Moustapha
,
S. H.
,
2002
, “
The Effect of Secondary Air Injection on the Performance of a Transonic Turbine Stage
,”
ASME
Paper No. GT2002-30340.
8.
Reid
,
K.
,
Denton
,
J.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
,
2006
, “
The Effect of Stator-Rotor Hub Sealing Flow on the Mainstream Aerodynamics of a Turbine
,”
ASME
Paper No. GT2006-90838.
9.
Roy
,
R. P.
,
Squires
,
K. D.
,
Gerendas
,
M.
,
Song
,
S.
,
Howe
,
W. J.
, and
Ansari
,
A.
,
2000
, “
Flow and Heat Transfer at the Hub Endwall of Inlet Vane Passages—Experiments and Simulations
,”
ASME
Paper No. 2000-GT-0198.
10.
Burd
,
S. W.
,
Satterness
,
C. J.
, and
Simon
,
T. W.
,
2000
, “
Effects of Slot Bleed Injection Over a Contoured End Wall on Nozzle Guide Vane Cooling Performance—Part II: Thermal Measurements
,”
ASME
Paper No. 2000-GT-0200.
11.
Oke
,
R.
,
Simon
,
T.
,
Shih
,
T.
,
Zhu
,
B.
,
Lin
,
Y. L.
, and
Chyu
,
M.
,
2001
, “
Measurements Over a Film-Cooled Contoured Endwall With Various Coolant Injection Rates
,”
ASME
Paper No. 2001-GT-0140.
12.
Dénos
,
R.
, and
Paniagua
,
G.
,
2002
, “
Influence of the Hub Endwall Cavity Flow on the Time-Averaged and Time-Resolved Aero-Thermodynamics of Axial HP Turbine Stage
,”
ASME
Paper No. GT2002-30185.
13.
Wright
,
L. M.
,
Gao
,
Z.
,
Yang
,
H.
, and
Han
,
J. C.
,
2008
, “
Film Cooling Effectiveness Distribution on a Gas Turbine Blade Platform With Inclined Slot Leakage and Discrete Film Hole Flows
,”
ASME J. Heat Transfer
,
130
(
7
), p.
071702
.
14.
Wright
,
L. M.
,
Blake
,
S. A.
, and
Han
,
J. C.
,
2006
, “
Film Cooling Effectiveness Distributions on a Turbine Blade Cascade Platform With Stator-Rotor Purge and Discrete Film Hole Flows
,”
ASME
Paper No. IMECE2006-15092.
15.
Popovic
,
I.
, and
Hodson
,
H. P.
,
2010
, “
Aerothermal Impact of the Interaction Between Hub Leakage and Mainstream Flows in Highly-Loaded HP Turbine Blades
,”
ASME
Paper No. GT2010-22311.
16.
Miao
,
X.
,
Zhang
,
Q.
,
Atkin
,
C.
, and
Sun
,
Z.
,
2016
, “
End-Wall Secondary Flow Control Using Engineered Residual Surface Structure
,”
ASME
Paper No. GT2016-57347.
17.
Miao
,
X.
,
Zhang
,
Q.
,
Wang
,
L.
,
Jiang
,
H.
, and
Qi
,
H.
,
2015
, “
Application of Riblets on Turbine Blade Endwall Secondary Flow Control
,”
J. Propul. Power
,
31
(
6
), pp.
1578
1585
.
18.
Camci
,
C.
, and
Rizzo
,
D. H.
,
2002
, “
Secondary Flow and Forced Convection Heat Transfer Near Endwall Boundary Layer Fences in a 90 Turning Duct
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
831
843
.
19.
Schulz
,
A.
,
2000
, “
Infrared Thermography as Applied to Film Cooling of Gas Turbine Components
,”
Meas. Sci. Technol.
,
11
(
7
), p.
948
.
20.
O'Dowd
,
D. O.
,
Zhang
,
Q.
,
He
,
L.
,
Ligrani
,
P. M.
, and
Friedrichs
,
S.
,
2011
, “
Comparison of Heat Transfer Measurement Techniques on a Transonic Turbine Blade Tip
,”
ASME J. Turbomach.
,
133
(
2
), p.
021028
.
21.
Zhang
,
Q.
,
He
,
L.
,
Wheeler
,
A. P. S.
,
Ligrani
,
P. M.
, and
Cheong
,
B. C. Y.
,
2011
, “
Overtip Shock Wave Structure and Its Impact on Turbine Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041001
.
22.
Oldfield
,
M. L.
,
2008
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
,
130
(
2
), p.
021023
.
23.
Zhang
,
Q.
,
O'Dowd
,
D. O.
,
He
,
L.
,
Oldfield
,
M. L. G.
, and
Ligrani
,
P. M.
,
2011
, “
Transonic Turbine Blade Tip Aerothermal Performance With Different Tip Gaps—Part I: Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041027
.
24.
Zhang
,
Q.
,
He
,
L.
,
Cheong
,
B. C. Y.
, and
Tibbott
,
I.
,
2013
, “
Aerothermal Performance of a Cooled Winglet at Engine Representative Mach and Reynolds Numbers
,”
ASME J. Turbomach.
,
135
(
1
), p.
011041
.
25.
Ma
,
H.
,
Zhang
,
Q.
,
He
,
L.
,
Wang
,
Z.
, and
Wang
,
L.
,
2017
, “
Cooling Injection Effect on a Transonic Squealer Tip—Part I: Experimental Heat Transfer Results and CFD Validation
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052506
.
26.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
27.
Devore
,
J. L.
,
2011
,
Probability and Statistics for Engineering and the Sciences
,
Cengage Learning
, Boston, MA.
28.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
,
118
(
4
), pp. 807–813.
29.
Knost
,
D.
, and
Thole
,
K.
,
2005
, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First-Stage Vane
,”
ASME J. Turbomach.
,
127
(
2
), pp.
297
305
.
30.
Nicklas
,
M.
,
2001
, “
Film-Cooled Turbine Endwall in a Transonic Flow Field—Part II: Heat Transfer and Film-Cooling Effectiveness
,”
ASME J. Turbomach.
,
123
(
4
), pp.
720
729
.
31.
Wright
,
L. M.
,
Blake
,
S.
, and
Han
,
J. C.
,
2007
, “
Effectiveness Distributions on Turbine Blade Cascade Platforms Through Simulated Stator-Rotor Seals
,”
J. Thermophys. Heat Transfer
,
21
(
4
), pp.
754
762
.
You do not currently have access to this content.