The effect of inlet distortion from curved intake ducts on jet engine fan stability is an important consideration for next-generation passenger aircraft such as the boundary layer ingestion (BLI) “silent aircraft.” Highly complex inlet flows which occur can significantly affect fan stability. Future aircraft designs are likely to feature more severe inlet distortion, pressing the need to understand the important factors influencing design. This paper presents the findings from a large computational fluid dynamics (CFD) investigation into which aspects of inlet distortion cause the most significant reductions in stall margin and, therefore, which flow patterns should be targeted by mitigating technology. The study considers the following aspects of distortion commonly observed in intakes: steady vortical distortion due to secondary flow, unsteady vortical distortion due to vortex shedding and mixing, static pressure distortion due to curved streamlines, and low momentum endwall flow due to thickened boundary layers or separation. Unsteady CFD was used to determine the stall points of a multipassage transonic rotor geometry with each of the inlet distortion patterns applied. Interesting new evidence is provided, which suggests that low momentum flow in the tip region, rather than distortion in the main body of the flow, leads to damaging instability.

References

References
1.
Tucker
,
P. G.
,
2014
,
Unsteady Computational Fluid Dynamics in Aeronautics
,
Springer
, Dordrecht, The Netherlands.
2.
Shaw
,
M. J.
,
Hield
,
P.
, and
Tucker
,
P. G.
,
2014
, “
The Effect of Inlet Guide Vanes on Inlet Flow Distortion Transfer and Transonic Fan Stability
,”
ASME J. Turbomach.
,
136
(
2
), p.
021015
.
3.
Sheoran
,
Y.
,
Bouldin
,
B.
, and
Krishnan
,
P. M.
,
2011
, “
Compressor Performance and Operability in Swirl Distortion
,”
ASME J. Turbomach.
,
134
(
4
), p.
041008
.
4.
Pardo
,
A. C.
,
Mehdi
,
A.
,
Pachidis
,
V.
, and
MacManus
,
D. G.
,
2014
, “
Numerical Study of the Effect of Multiple Tightly-Wound Vortices on a Transonic Fan Stage Performance
,”
ASME
Paper No. GT2014-26481.
5.
Sghaier
,
T. B.
,
Mehdi
,
A.
,
Pachidis, V.
, and
MacManus, D.
,
2013
, “
A Parametric Numerical Study of the Effects of Inlet Swirl Distortion on a Transonic Compressor Stage
,”
ASME
Paper No. GT2013-94374.
6.
Mistry
,
C. S.
, and
Pradeep
,
A. M.
,
2013
, “
Investigations on the Effect of Inflow Distortion on the Performance of a High Aspect Ratio, Low Speed Contra Rotating Fan Stage
,”
ASME
Paper No. GT2013-94311.
7.
Gunn
,
E. J.
,
Tooze
,
S. E.
,
Hall
,
C. A.
, and
Colin
,
Y.
,
2013
, “
An Experimental Study of Loss Sources in a Fan Operating With Continuous Inlet Stagnation Pressure Distortion
,”
ASME J. Turbomach.
,
135
(
5
), p.
051002
.
8.
Gunn
,
E. J.
, and
Hall
,
C. A.
,
2014
, “
Aerodynamics of Boundary Layer Ingesting Fans
,”
ASME
Paper No. GT2014-26142.
9.
Perovic
,
D.
,
Hall
,
C. A.
, and
Gunn
,
E. J.
,
2015
, “
Stall Inception in a Boundary Layer Ingesting Fan
,”
ASME
Paper No. GT2015-43025.
10.
Hah
,
C.
,
Bergner
,
J.
, and
Schiffer
,
H.-P.
,
2006
, “
Short Length-Scale Rotating Stall Inception in a Transonic Axial Compressor: Criteria and Mechanisms
,”
ASME
Paper No. GT2006-90045.
11.
Camp, T. R.
, and
Day, I. J.
, 1998, “
A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor
,”
ASME J. Turbomach.
,
120
(3), pp. 393–401.
12.
Hoying
,
D. A.
,
Tan
,
C. S.
,
Vo
,
H. D.
, and
Greitzer
,
E. M.
,
1999
, “
Role of Blade Passage Flow Structures in Axial Compressor Rotating Stall Inception
,”
ASME J. Turbomach.
,
121
(
4
), pp. 735–742.
13.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p. 011023.
14.
Zhang
,
Y.
,
Lu
,
X.
,
Chu
,
W.
, and
Zhu
,
J.
,
2010
, “
Numerical Investigation of the Unsteady Tip Leakage Flow and Rotating Stall Inception in a Transonic Compressor
,”
J. Therm. Sci.
,
19
(
4
), pp.
310
317
.
15.
Du
,
J.
,
Lin
,
F.
,
Zhang
,
H.
, and
Chen
,
J.
,
2010
, “
Numerical Investigation on the Self-Induced Unsteadiness in Tip Leakage Flow for a Transonic Fan Rotor
,”
ASME J. Turbomach.
,
132
(
2
), p. 021017.
16.
März
,
J.
,
Hah
,
C.
, and
Neise
,
W.
,
2002
, “
An Experimental and Numerical Investigation Into the Mechanisms of Rotating Instability
,”
ASME J. Turbomach.
,
124
(
3
), pp. 367–374.
17.
Wu
,
Y.
,
Li
,
Q.
,
Tian
,
J.
, and
Chu
,
W.
,
2012
, “
Investigation of Pre-Stall Behavior in an Axial Compressor Rotor—Part I: Unsteadiness of Tip Clearance Flow
,”
ASME J. Turbomach.
,
134
(
5
), p. 051027.
18.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
,
2000
, “
Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex
,”
ASME J. Turbomach.
,
123
(
3
), pp. 453–460.
19.
Hah
,
C.
,
Rabe
,
D. C.
, and
Wadia
,
A. R.
,
2004
, “
Role of Tip-Leakage Vortices and Passage Shock in Stall Inception in a Swept Transonic Compressor Rotor
,”
ASME
Paper No. GT2004-53867.
20.
Pullan
,
G.
,
Young
,
A. M.
,
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Spakovsky
,
Z. S.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), p.
051007
.
21.
Page
,
J. H.
,
Hield
,
P.
, and
Tucker
,
P. G.
,
2013
, “
Inverse Design of 3D Multistage Transonic Fans at Dual Operating Points
,”
ASME J. Turbomach.
,
136
(
4
), p.
041008
.
22.
Hield
,
P.
,
2008
, “
Semi-Inverse Design Applied to an Eight Stage Transonic Axial Flow Compressor
,”
ASME
Paper No. GT2008-50430.
23.
Brandvik
,
T.
, and
Pullan
,
G.
,
2010
, “
An Accelerated 3D Navier–Stokes Solver for Flows in Turbomachines
,”
ASME J. Turbomach.
,
133
(
2
), p.
021025
.
24.
McLelland
,
G.
,
di Cugno
,
D.
,
MacManus
,
D. G.
, and
Pachidis
,
V.
,
2012
, “
Boundary Conditions for Vortex CFD Simulations
,”
ASME
Paper No. GT2012-68718.
25.
Page
,
J. H.
,
Hield
,
P.
, and
Tucker
,
P. G.
,
2016
, “
Effect of Vortex Ingestion on Transonic Fan Stability
,”
AIAA
Paper No. AIAA 2016-0396.
You do not currently have access to this content.