Axial compressors may be operated under off-design incidences due to variable operating conditions. Therefore, a successful design requires accurate performance and stability limits predictions under a wide operating range. Designers generally rely both on correlations and on Reynolds-averaged Navier–Stokes (RANS), the accuracy of the latter often being questioned. The present study investigates profile losses in an axial compressor linear cascade using both RANS and wall-resolved large eddy simulation (LES), and compares with measurements. The analysis concentrates on “loss buckets,” local separation bubbles and boundary layer transition with high levels of free stream turbulence, as encountered in real compressor environment without and with periodic incoming wakes. The work extends the previous research with the intention of furthering our understanding of prediction tools and improving our quantification of the physical processes involved in loss generation. The results show that while RANS predicts overall profile losses with good accuracy, the relative importance of the different loss mechanisms does not match with LES, especially at off-design conditions. This implies that a RANS-based optimization of a compressor profile under a wide incidence range may require a thorough LES verification at off-design incidence.

References

References
1.
Adamczyk
,
J. J.
,
Hansen
,
J. L.
, and
Prahst
,
P. S.
,
2007
, “
A Post Test Analysis of a High-Speed Two-Stage Axial Flow Compressor
,”
ASME
Paper No. GT2007-28057.
2.
Lübcke
,
H.
,
Schmidt
,
S. T.
,
Rung
,
T.
, and
Thiele
,
F.
,
2001
, “
Comparison of LES and RANS in Bluff-Body Flows
,”
J. Wind Eng. Ind. Aerodyn.
,
89
(
14–15
), pp.
1471
1485
.
3.
Yao
,
Y. F.
,
Savill
,
A. M.
,
Sandham
,
N. D.
, and
Dawes
,
W. N.
,
2002
, “
Simulation and Modelling of Turbulent Trailing-Edge Flow
,”
Flow Turbul. Combust.
,
68
(
4
), pp.
313
333
.
4.
Michelassi
,
V.
,
Chen
,
L.-W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines Part II: Effect of Inflow Disturbances
,”
ASME J. Turbomach.
,
137
(
5
), pp.
71005
71012
.
5.
Pichler
,
R.
,
Sandberg
,
R. D.
,
Michelassi
,
V.
, and
Bhaskaran
,
R.
,
2016
, “
Investigation of the Accuracy of RANS Models to Predict the Flow Through a Low-Pressure Turbine
,”
ASME J. Turbomach.
,
138
(
12
), p.
121009
.
6.
Michelassi
,
V.
,
Chen
,
L.
,
Pichler
,
R.
,
Sandberg
,
R.
, and
Bhaskaran
,
R.
,
2016
, “
High-Fidelity Simulations of Low-Pressure Turbines: Effect of Flow Coefficient and Reduced Frequency on Losses
,”
ASME J. Turbomach.
,
138
(
11
), p.
111006
.
7.
Cumpsty
,
N. A.
,
Dong
,
Y.
, and
Li
,
Y. S.
,
1995
, “
Compressor Blade Boundary Layers in the Presence of Wakes
,”
ASME
Paper No. 95-GT-443.
8.
Adamczyk
,
J. J.
,
Celestina
,
M. L.
, and
Chen
,
J. P.
,
1996
, “
Wake-Induced Unsteady Flows: Their Impact on Rotor Performance and Wake Rectification
,”
ASME J. Turbomach.
,
118
(
1
), pp.
88
95
.
9.
Leggett
,
J.
,
Priebe
,
S.
,
Sandberg
,
R.
,
Michelassi
,
V.
, and
Shabbir
,
A.
,
2016
, “
Detailed Investigation of RANS and LES Predictions of Loss Generation in an Axial Compressor Cascade at Off Design Incidences
,”
ASME
Paper No. GT2016-57972.
10.
Leipold
,
R.
,
Boese
,
M.
, and
Fottner
,
L.
,
2000
, “
The Influence of Technical Surface Roughness Caused by Precision Forging on the Flow Around a Highly Loaded Compressor Cascade
,”
ASME J. Turbomach.
,
122
(
3
), pp.
416
425
.
11.
Hilgenfeld
,
L.
, and
Pfitzner
,
M.
,
2004
, “
Unsteady Boundary Layer Development Due to Wake Passing Effects on a Highly Loaded Linear Compressor Cascade
,”
ASME J. Turbomach.
,
126
(
4
), pp.
493
500
.
12.
Sandberg
,
R. D.
,
Michelassi
,
V.
,
Pichler
,
R.
,
Chen
,
L.
, and
Johnstone
,
R.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part I: Methodology
,”
ASME J. Turbomach.
,
137
(
5
), p.
051011
.
13.
Kennedy
,
C. A.
,
Carpenter
,
M. H.
, and
Lewis
,
R. M.
,
2000
, “
Low-Storage, Explicit Runge-Kutta Schemes for the Compressible Navier-Stokes Equations
,”
Appl. Numer. Math.
,
35
(
3
), pp.
177
219
.
14.
Kim
,
J. W.
, and
Lee
,
D. J.
,
2003
, “
Characteristic Interface Conditions for Multiblock High-Order Computation on Singular Structured Grid
,”
AIAA J.
,
41
(
12
), pp.
2341
2348
.
15.
Sandberg
,
R. D.
, and
Sandham
,
N. D.
,
2006
, “
Nonreflecting Zonal Characteristic Boundary Condition for Direct Numerical Simulation of Aerodynamic Sound
,”
AIAA J.
,
44
(
2
), pp.
402
405
.
16.
Kennedy
,
C.
, and
Gruber
,
A.
,
2008
, “
Reduced Aliasing Formulations of the Convective Terms Within the Navier-Stokes Equations for a Compressible Fluid
,”
J. Comp. Phys.
,
227
(
3
), pp.
1676
1700
.
17.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.
18.
Sandberg
,
R. D.
,
2012
, “
Numerical Investigation of Turbulent Supersonic Axisymmetric Wakes
,”
J. Fluid Mech.
,
702
, pp.
488
520
.
19.
Sandberg
,
R. D.
,
Sandham
,
N. D.
, and
Suponitsky
,
V.
,
2012
, “
DNS of Compressible Pipe Flow Exiting Into a Coflow
,”
Int. J. Heat Fluid Flow
,
35
, pp.
33
44
.
20.
Klein
,
M.
,
Sadiki
,
A.
, and
Janicka
,
J.
,
2003
, “
A Digital Filter Based Generation of Inflow Data for Spatially Developing Direct Numerical or Large Eddy Simulations
,”
J. Comp. Phys.
,
186
(
2
), pp.
652
665
.
21.
Johnstone
,
R.
,
Chen
,
L.
, and
Sandberg
,
R. D.
,
2015
, “
A Sliding Characteristic Interface Condition for Direct Numerical Simulations
,”
Comp. Fluids
,
107
, pp.
165
177
.
22.
Prasad
,
A.
,
2005
, “
Calculation of the Mixed-Out State in Turbomachine Flows
,”
ASME J. Turbomach.
,
127
(
3
), pp.
564
572
.
23.
Iseler
,
J.
,
Hilgenfeld
,
L.
, and
Pfitzner
,
M.
,
2006
, “
Investigations of the Boundary Layer on a Highly Loaded Compressor Cascade With Wake-Induced Transition
,”
ASME
Paper No. GT2006-90665.
24.
Walraevens
,
R. E.
, and
Cumpsty
,
N. A.
,
1995
, “
Leading Edge Separation Bubbles on Turbomachine Blades
,”
ASME J. Turbomach.
,
117
(
1
), pp.
115
125
.
25.
Wheeler
,
A. P. S.
,
Sandberg
,
R. D.
,
Sandham
,
N. D.
,
Pichler
,
R.
,
Michelassi
,
V.
, and
Laskowski
,
G.
,
2016
, “
Direct Numerical Simulations of a High-Pressure Turbine Vane
,”
ASME J. Turbomach.
,
138
(
7
), p.
071003
.
26.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
You do not currently have access to this content.