Blade row interactions drive the unsteady performance of high-pressure compressors. Vane clocking is the relative circumferential positioning of consecutive stationary vane rows with the same vane count. By altering the upstream vane wake's path with respect to the downstream vane, vane clocking changes the blade row interactions and results in a change in steady total pressure loss on the downstream vane. The open literature lacks a conclusive discussion of the flow physics governing these interactions in compressors. This paper presents the details of a comprehensive vane clocking study on the embedded stage of the Purdue three-stage axial compressor. The steady loss results, including radial total pressure profiles and surface flow visualization, suggest a shift in the stator 2 corner separations occurs between clocking configurations associated with the maximum and minimum total pressure loss. To better understand the flow mechanisms driving the vane clocking effects on the steady stator 2 performance, time-resolved interrogations of the stator 2 inlet flow field, surface pressure unsteadiness, and boundary layer response were conducted. The stator 2 surface flows, both pressure unsteadiness and boundary layer transition, are influenced by vane clocking and interactions between rotor 1 and rotor 2, but neither of these results indicate a cause for the change in steady total pressure loss. Moreover, they are a result of upstream changes in the flow field: the interaction between the stator 1 wake and rotor 2 results in a circumferentially varying pattern which alters the inlet flow field for the downstream row, including the unsteadiness and frequency content in the tip and hub regions. Therefore, under different clocking configurations, stator 2 experiences significantly different inlet blockage and unsteadiness from the rotor 2 tip leakage flow and hub corner separation, which, in turn, shifts the radial blade loading distribution and subsequent loss development of stator 2.

References

1.
Walker
,
G. J.
, and
Oliver
,
A. R.
,
1972
, “
The Effect of Interaction Between Wakes From Blade Rows in an Axial Flow Compressor on the Noise Generated by Blade Interaction
,”
ASME J. Eng. Power
,
94
(
4
), pp.
241
248
.
2.
Schmidt
,
D. P.
, and
Okiishi
,
T. H.
,
1977
, “
Multistage Axial-Flow Turbomachine Wake Production, Transport, and Interaction
,”
AIAA J.
,
15
(
8
), pp.
1138
1145
.
3.
Kamiyoshi
,
S.
, and
Kaji
,
S.
,
1992
, “
Tone Noise Reduction of Multi-Stage Fan by Airfoil Clocking
,”
AIAA
Paper No. 2000-1992.
4.
Hsu
,
S. T.
, and
Wo
,
M. A.
,
1998
, “
Reduction of Unsteady Blade Loading by Beneficial of Vortical and Potential Disturbances in an Axial Compressor With Rotor Clocking
,”
ASME J. Turbomach.
,
120
(
4
), pp.
705
713
.
5.
Mailach
,
R.
, and
Vogeler
,
K.
,
2004
, “
Aerodynamic Blade Row Interactions in an Axial Compressor—Part 1: Unsteady Boundary Layer Development
,”
ASME J. Turbomach.
,
126
(
1
), pp.
35
44
.
6.
Capece
,
S. R.
,
Manwaring
,
S. R.
, and
Fleeter
,
S.
,
1986
, “
Unsteady Blade Row Interactions in a Multistage Compressor
,”
AIAA J. Propul.
,
2
(
2
), pp.
168
174
.
7.
Gundy-Burlet
,
K. L.
, and
Dorney
,
D. J.
,
1997
, “
Physics of Airfoil Clocking in Axial Compressors
,”
ASME
Paper No. 97-GT-444.
8.
Barankiewicz
,
W. S.
, and
Hathaway
,
M. D.
,
1997
, “
Effects of Stator Indexing on Performance in a Low Speed Multistage Axial Compressor
,”
ASME
Paper No. 97-GT-496.
9.
Walker
,
G. J.
,
Hughes
,
J. D.
,
Köhler
,
I.
, and
Solomon
,
W. J.
,
1997
, “
The Influence of Wake-Wake Interactions on Loss Fluctuations of a Downstream Axial Compressor Blade Row
,”
ASME
Paper No. 97-GT-469.
10.
Saren
,
V. E.
,
Savin
,
N. M.
,
Dorney
,
D. J.
, and
Zacharias
,
R. M.
,
1997
, “
Experimental and Numerical Investigation of Unsteady Rotor-Stator Interaction on Axial Compressor Stage (With IGV) Performance
,”
Eighth International Symposium, Unsteady Aerodynamics and Aeroelasticity of Turbomachines
, Stockholm, Sweden, Sept. 14–18, pp.
407
424
.
11.
Key
,
N. L.
,
Lawless
,
P. B.
, and
Fleeter
,
S.
,
2010
, “
An Experimental Study of Vane Clocking Effects on Embedded Compressor Stage Performance
,”
ASME J. Turbomach.
,
132
(
1
), p. 011018.
12.
Städing
,
J.
,
Wulff
,
D.
,
Kosyna
,
G.
,
Becker
,
B.
, and
Gümmer
,
V.
,
2011
, “
An Experimental Investigation of Stator Clocking Effects in a Two-Stage Low-Speed Axial Compressor
,”
ASME
Paper No. GT2011-45680.
13.
Key
,
N. L.
,
2013
, “
Compressor Vane Clocking Effects on Embedded Rotor Performance
,”
J. Propul. Power
,
30
(
1
), pp.
246
248
.
14.
Griffin
,
L. W.
,
Huber
,
F. W.
, and
Sharma
,
O. P.
,
1996
, “
Performance Improvement Through Indexing of Turbine Airfoils: Part 2—Numerical Simulation
,”
ASME J. Turbomach.
,
118
(
4
), pp.
636
642
.
15.
Dorney
,
D. J.
,
Sharma
,
O. P.
, and
Gundy-Burlet
,
K. L.
,
1998
, “
Physics of Airfoil Clocking in a High-Speed Axial Compressor
,”
ASME
Paper No. 98-GT-82.
16.
Walker
,
G. J.
,
Hughes
,
J. D.
, and
Solomon
,
W. J.
,
1999
, “
Periodic Transition on an Axial Compressor Stator: Incidence and Clocking Effects—Part I: Experimental Data
,”
ASME J. Turbomach.
,
121
(
3
), pp.
398
407
.
17.
Key
,
N. L.
,
Lawless
,
P. B.
, and
Fleeter
,
S.
,
2008
, “
An Investigation of the Flow Physics of Vane Clocking Using Unsteady Flow Measurements
,”
ASME
Paper No. GT2008-51091.
18.
Konig
,
S.
,
Stoffel
,
B.
, and
Schobeiri
,
M. T.
,
2009
, “
Experimental Investigation of the Clocking Effect in a 1.5-Stage Axial Turbine—Part II: Unsteady Results and Boundary Layer Behavior
,”
ASME J. Turbomach.
,
131
(
2
), p. 021004.
19.
Dorney
,
D. J.
, and
Sharma
,
O. P.
,
1996
, “
A Study of Turbine Performance Increases Through Airfoil Clocking
,”
AIAA
Paper No. 96-2816.
20.
Murray
,
W. L.
, III
,
2014
, “
Experimental Investigation of a Forced Response Condition in a Multistage Compressor
,”
M.S. thesis
, Purdue University, West Lafayette, IN.https://docs.lib.purdue.edu/open_access_theses/735/
21.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
Bladerow Interactions, Transition, and High-Lift Aerofoils in Low-Pressure Turbines
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
71
98
.
22.
Smith
,
N. R.
, and
Key
,
N. L.
,
2015
, “
Vane Clocking Effects on Stator Loss for Different Compressor Loading Conditions
,”
J. Propul. Power
,
31
(
2
), pp.
519
526
.
23.
Smith
,
N. R.
, and
Key
,
N. L.
,
2013
, “
Vane Clocking Effects on Stall Margin in a Multistage Compressor
,”
J. Propul. Power
,
29
(
4
), pp.
891
898
.
24.
Smith
,
N. R.
, and
Key
,
N. L.
,
2015
, “
Flow Visualization for Investigating Stator Losses in a Multistage Axial Compressor
,”
Exp. Fluids
,
56
(
5
), p.
94
.
25.
Smith
,
N. R.
,
2015
, “
An Experimental Study on the Effects of Blade Row Interactions on Aerodynamic Loss Mechanisms in a Multistage Compressor
,”
Ph.D. dissertation
, Purdue University, West Lafayette, IN.https://docs.lib.purdue.edu/open_access_dissertations/558/
26.
Wellborn
,
S. R.
,
1996
, “
Effects of Shrouded Stator Cavity Flows on Multistage Axial Compressor Aerodynamic Performance
,”
Ph.D. dissertation
, Iowa State University, Ames, IA.https://lib.dr.iastate.edu/rtd/11344/
27.
Smith
,
N. R.
,
Murray
,
W. L.
, III.
, and
Key
,
N. L.
,
2015
, “
Considerations for Measuring Compressor Aerodynamic Excitations Including Rotor Wakes and Tip Leakage Flows
,”
ASME J. Turbomach.
,
138
(
3
), p.
031008
.
28.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
,
2008
, “
Periodic Unsteady Flow Within a Rotor Blade Row of an Axial Compressor—Part II: Wake-Tip Clearance Vortex Interaction
,”
ASME J. Turbomach.
,
130
(
4
), p.
041005
.
29.
Smith
,
N. R.
, and
Key
,
N. L.
,
2017
, “
Blade Row Interaction Effects on Unsteady Stator Loading in an Embedded Compressor Stage
,”
J. Propul. Power
,
33
(
1
), pp.
248
255
.
30.
Berdanier
,
R. A.
, and
Key
,
N. L.
,
2016
, “
Experimental Characterization of Tip Leakage Flow Trajectories in a Multistage Compressor
,”
J. Propul. Power
,
32
(
4
), pp.
1022
1032
.
31.
Smith
,
N. R.
, and
Key
,
N. L.
,
2016
, “
Vane Clocking Effects on Stator Suction Side Boundary Layers in a Multistage Compressor
,”
Int. J. Rotating Mach.
,
2016
, p.
5921463
.
32.
Smith
,
N. R.
, and
Key
,
N. L.
,
2014
, “
Unsteady Vane Boundary Layer Response to Rotor–Rotor Interactions in a Multistage Compressor
,”
J. Propul. Power
,
30
(
2
), pp.
416
425
.
You do not currently have access to this content.