Film-cooling effectiveness of rectangular diffusion holes under an inclination angle α = 45 deg, an orientation angle β = 45 deg, and a length-to-diameter ratio of L/D = 8.5 were, respectively, examined in a flat-plate experimental facility using the pressure sensitive paint (PSP) technique. Experiments were performed at a density ratio of DR = 1.38 and a mainstream turbulence intensity of Tu = 3.5%. The semicircle sidewall rectangular diffusion hole varied at three cross-sectional aspect ratios, i.e., AS = 3.4, 4.9, and 6.6. The tested results were compared with the baseline design with an inclination angle α = 30 deg, an orientation angle β = 0 deg, and a length-to-diameter ratio L/D = 6. A three-dimensional (3D) numerical simulation method was employed to analyze the flow field. The experimental results showed that the increased inclination angle converted the bi- or tri-peak effectiveness pattern of the baseline design to a single-peak pattern, weakened the lateral diffusion of coolant, and consequently decreased cooling effectiveness obviously. The decreased magnitude amplified with the increase of cross-sectional aspect ratio and blowing ratio. The adding of orientation angle seriously weakened the cooling effectiveness of the baseline design, and the blowing ratio and cross-sectional aspect ratio had almost no effect on overall cooling effectiveness. The elongated hole length provided a uniform distribution of lateral cooling effectiveness, which produced differential effects on the bi- or tri-peak pattern. The elongated hole length decreased the cooling effectiveness on the near hole region, but had less effects on overall cooling effectiveness, except the high blowing ratio.

References

References
1.
Ramsey
,
J. W.
, and
Goldstein
,
R. J.
,
1971
, “
Interaction of a Heated Jet With a Deflecting Stream
,”
ASME J. Heat Transfer
,
93
(
4
), pp.
365
372
.
2.
Foster
,
N. W.
, and
Lampard
,
D.
,
1980
, “
The Flow and Film Cooling Effectiveness Following Injection Through a Row of Holes
,”
ASME J. Eng. Power
,
102
(
3
), pp.
584
588
.
3.
Kruse
,
H.
,
1985
, “
Effects of Hole Geometry, Wall Curvature and Pressure Gradient on Film Cooling Downstream of a Single Row
,” AGARD Paper No.
AGARD-CP-390
.http://adsabs.harvard.edu/abs/1985htcg.agarQ....K
4.
Goldstein
,
R. J.
, and
Stone
,
L. D.
,
1997
, “
Row-of-Holes Film Cooling of Curved Walls at Low Injection Angles
,”
ASME J. Turbomach.
,
119
(
3
), pp.
574
580
.
5.
Kohli
,
A.
, and
Bogard
,
D. G.
,
1997
, “
Adiabatic Effectiveness, Thermal Fields, and Velocity Fields for Film Cooling With Large Angle Injection
,”
ASME J. Turbomach.
,
119
(
2
), pp.
352
359
.
6.
Baldauf
,
S.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2001
, “
High Resolution Measurements of Local Effectiveness From Discrete Hole Film Cooling
,”
ASME J. Turbomach.
,
123
(
4
), pp.
758
766
.
7.
Yuen
,
C. H. N.
, and
Martinez-Botas
,
R. F.
,
2005
, “
Film Cooling Characteristics of Rows of Round Holes at Various Streamwise Angles in a Crossflow—Part I: Effectiveness
,”
Int J. Heat Mass Transfer
,
48
(
23–24
), pp.
4995
5016
.
8.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061008
.
9.
Heneka
,
C.
,
Schulz
,
A.
,
Bauer
,
H. J.
, and
Heselhaus
,
A.
,
2012
, “
Film Cooling Performance of Sharp Edged Diffuser Holes With Lateral Inclination
,”
ASME J. Turbomach.
,
134
(
4
), p.
041015
.
10.
Zhai
,
Y.-N.
,
Liu
,
C.-L.
,
He
,
Y.-H.
, and
Zhou
,
Z.-X.
,
2017
, “
Investigation on the Film Cooling Performance of Diffuser Shaped Holes With Different Inclination Angles
,”
Int. J. Turbo Jet-Engines
,
34
(
2
), pp.
123
139
.
11.
Ekkad
,
S. V.
,
Zapata
,
D.
, and
Han
,
J. C.
,
1997
, “
Film Effectiveness Over a Flat Surface With Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method
,”
ASME J. Turbomach.
,
119
(
3
), pp.
580
586
.
12.
McGovern
,
K. T.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics—Part II: Compound-Angle Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
113
121
.
13.
Goldstein
,
R. J.
, and
Jin
,
P.
,
2001
, “
Film Cooling Downstream of a Row of Discrete Holes With Compound Angle
,”
ASME J. Turbomach.
,
123
(
2
), pp.
222
230
.
14.
Aga
,
V.
, and
Abhari
,
R. S.
,
2011
, “
Influence of Flow Structure on Compound Angled Film Cooling Effectiveness and Heat Transfer
,”
ASME J. Turbomach.
,
133
(
3
), p.
031029
.
15.
Natsui
,
G.
,
Claretti
,
R.
,
Ricklick
,
M. A.
,
Kapat
,
J. S.
,
Crawford
,
M. E.
,
Brown
,
G.
, and
Landis
,
K.
,
2016
, “
Experimental Evaluation of Large Spacing Compound Angle Full-Coverage Film Cooling Arrays: Adiabatic Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
138
(
7
), p.
071001
.
16.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2007
, “
Double-Jet Ejection of Cooling Air for Improved Film Cooling
,”
ASME J. Turbomach.
,
129
(
4
), pp.
809
815
.
17.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
118
(
4
), pp.
807
813
.
18.
Brittingham
,
R. A.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics—Part IV: Compound-Angle Injection With Shaped Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
133
145
.
19.
Gartshore
,
I.
,
Salcudean
,
M.
, and
Hassan
,
I.
,
2001
, “
Film Cooling Injection Hole Geometry: Hole Shape Comparison for Compound Cooling Orientation
,”
AIAA J.
,
39
(
8
), pp.
1493
1499
.
20.
Gritsch
,
M.
,
Colban
,
W.
,
Schär
,
H.
, and
Döbbeling
,
K.
,
2005
, “
Effect of Hole Geometry on the Thermal Performance of Fan-Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
127
(
4
), pp.
718
725
.
21.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
22.
Pedersen
,
D. R.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1977
, “
Film Cooling With Large Density Differences Between the Free-Stream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy
,”
ASME J. Heat Transfer
,
99
(
4
), pp.
620
627
.
23.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.
24.
Leylek
,
J. H.
, and
Zerkle
,
R. D.
,
1994
, “
Discrete-Jet Film Cooling: A Comparison of Computational Results With Experiments
,”
ASME J. Turbomach.
,
116
(
3
), pp.
358
369
.
25.
Burd
,
S. W.
,
Kaszeta
,
R. W.
, and
Simon
,
T. W.
,
1998
, “
Measurements in Film Cooling Flows: Hole L/D and Turbulence Intensity Effects
,”
ASME J. Turbomach.
,
120
(
4
), pp.
791
799
.
26.
Lutum
,
E.
, and
Johnson
,
B. V.
,
1999
, “
Influence of the Hole Length-to-Diameter Ratio on Film Cooling With Cylindrical Holes
,”
ASME J. Turbomach.
,
121
(
2
), pp.
209
217
.
27.
Singh
,
K.
,
Premachandran
,
B.
, and
Ravi
,
M. R.
,
2016
, “
Experimental Assessment of Film Cooling Performance of Short Cylindrical Holes on a Flat Surface
,”
Heat Mass Transfer
,
52
(
12
), pp.
2849
2862
.
28.
An
,
B.-T.
,
Liu
,
J.-J.
, and
Zhou
,
S.-J.
,
2017
, “
Geometrical Parameter Effects on Film-Cooling Effectiveness of Rectangular Diffusion Holes
,”
ASME J. Turbomach.
,
139
(
8
), p.
081010
.
29.
Johnson
,
B.
, and
Hu
,
H.
,
2016
, “
Measurement Uncertainty Analysis in Determining Adiabatic Film Cooling Effectiveness by Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
138
(
12
), p.
121004
.
30.
An
,
B.-T.
, and
Liu
,
J.-J.
,
2017
, “
Numerical Investigation on Diffusion Slot Hole With Various Cross-Sectional End Shapes
,”
ASME J. Heat Transfer
,
139
(
9
), p.
091703
.
31.
Aghasi
,
P.
,
Gutmark
,
E.
, and
Munday
,
D.
,
2016
, “
Dependence of Film Cooling Effectiveness on 3D Printed Cooling Holes
,”
ASME
Paper No. GT2016-56698.
You do not currently have access to this content.